A061214
Product of composite numbers between the n-th and (n+1)st primes.
Original entry on oeis.org
1, 4, 6, 720, 12, 3360, 18, 9240, 11793600, 30, 45239040, 59280, 42, 91080, 311875200, 549853920, 60, 1072431360, 328440, 72, 2533330800, 531360, 4701090240, 60072730099200, 970200, 102, 1157520, 108, 1367520, 1063186156509747740870400000, 2146560, 43191973440
Offset: 1
a(4) = 8 * 9 * 10 = 720. 7 is the fourth prime and 11 is the fifth prime. a(5) = 12 as 11 and 13 both are primes.
-
a061214 n = a061214_list !! (n-1)
a061214_list = f a000040_list where
f (p:ps'@(p':ps)) = (product [p+1..p'-1]) : f ps'
-- Reinhard Zumkeller, Jun 22 2011
-
A061214 := proc(n)
local k ;
product(k,k=ithprime(n)+1..ithprime(n+1)-1) ;
end proc: # R. J. Mathar, Apr 23 2013
-
Table[Times@@Range[Prime[n]+1,Prime[n+1]-1],{n,30}] (* Harvey P. Dale, Jun 14 2011 *)
Times@@Range[#[[1]]+1,#[[2]]-1]&/@Partition[Prime[Range[40]],2,1] (* Harvey P. Dale, Apr 23 2022 *)
-
{ n=0; q=2; forprime (p=3, prime(2001), a=1; for (i=q + 1, p - 1, a*=i); q=p; write("b061214.txt", n++, " ", a) ) } \\ Harry J. Smith, Jul 19 2009
-
v=primes(100);for(i=1,#v-1,v[i]=prod(j=v[i]+1,v[i+1]-1,j));vecextract(v,"1..-2") \\ Charles R Greathouse IV, Feb 27 2012
-
from math import prod
from sympy import prime
def A061214(n): return prod(i for i in range(prime(n)+1,prime(n+1))) # Chai Wah Wu, Jul 10 2022
Better definition from
T. D. Noe, Jan 21 2008
A059960
Smaller term of a pair of twin primes such that prime factors of their average are only 2 and 3.
Original entry on oeis.org
5, 11, 17, 71, 107, 191, 431, 1151, 2591, 139967, 472391, 786431, 995327, 57395627, 63700991, 169869311, 4076863487, 10871635967, 2348273369087, 56358560858111, 79164837199871, 84537841287167, 150289495621631, 578415690713087, 1141260857376767
Offset: 1
a(11)+1 = 2*2*2*3*3*3*3*3*3*3*3*3*3 = 472392.
Apart from initial terms, same as
A078883.
-
nn=10^15; Sort[Reap[Do[n=2^i 3^j; If[n<=nn && PrimeQ[n-1] && PrimeQ[n+1], Sow[n-1]], {i, Log[2, nn]}, {j, Log[3, nn]}]][[2, 1]]]
Select[Select[Partition[Prime[Range[38*10^5]],2,1],#[[2]]-#[[1]]==2&][[All,1]],FactorInteger[#+1][[All,1]]=={2,3}&] (* The program generates the first 15 terms of the sequence. *)
seq[max_] := Select[Sort[Flatten[Table[2^i*3^j - 1, {i, 1, Floor[Log2[max]]}, {j, 1, Floor[Log[3, max/2^i]]}]]], And @@ PrimeQ[# + {0, 2}] &]; seq[2*10^15] (* Amiram Eldar, Aug 27 2024 *)
A075580
Smallest prime p(k) such that the number of distinct prime divisors of all composite numbers between p(k) and p(k+1) is n.
Original entry on oeis.org
2, 3, 5, 7, 13, 19, 31, 53, 73, 89, 359, 139, 401, 181, 113, 211, 293, 661, 863, 773, 523, 1933, 1831, 1069, 1381, 887, 1637, 1129, 1669, 1951, 4027, 3469, 4177, 6397, 2477, 2971, 5531, 1327, 4297, 4831, 5351, 5591, 9973, 11743, 13187, 8467, 27851, 18803
Offset: 0
-
Table[i=1; While[Length[Union[Flatten[Table[First/@FactorInteger[j],{j,(x=Prime[i])+1,NextPrime[x]-1}]]]]!=n,i++]; x,{n,0,47}] (* Jayanta Basu, May 25 2013 *)
A075583
Primes p such that the composite numbers between p and the next prime together contain exactly three distinct prime factors.
Original entry on oeis.org
7, 29, 41, 59, 101, 137, 149, 179, 197, 227, 239, 269, 281, 311, 347, 521, 599, 617, 641, 809, 821, 827, 881, 1031, 1061, 1277, 1451, 1487, 1607, 1619, 1667, 1697, 1787, 1871, 1877, 1997, 2027, 2081, 2087, 2111, 2237, 2267, 2381, 2657, 2687, 2711, 2801, 2999
Offset: 1
-
a:=[]; for k in PrimesInInterval(2,3000) do b:={}; for s in [k..NextPrime(k)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 3 then Append(~a,k); end if; end for; a; // Marius A. Burtea, Sep 26 2019
A075584
Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 4.
Original entry on oeis.org
13, 79, 419, 461, 569, 659, 857, 1019, 1049, 1091, 1229, 1289, 1301, 1319, 1427, 1481, 1721, 1931, 1949, 2129, 2141, 2339, 2549, 2789, 2969, 3119, 3299, 3329, 3359, 3389, 3539, 3821, 3929, 4001, 4019, 4091, 4157, 4217, 4229, 4241, 4259, 4421, 4649, 4787
Offset: 1
For p = 79, the next prime number is 83. The numbers between 79 and 83 and the prime divisors are respectively 80 { 2, 5 }, 81 { 3 }, 82 { 2, 41 }. The set of prime divisors is { 2, 3, 5, 41 } and has 4 elements, so 79 is a term. - _Marius A. Burtea_, Sep 26 2019
-
a:=[]; for p in PrimesInInterval(2,4800) do b:={}; for s in [p..NextPrime(p)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 4 then Append(~a,p); end if; end for; a; // Marius A. Burtea, Sep 26 2019
-
Select[Prime@ Range@ 650, Length@ Union@ Flatten@ Map[First /@ FactorInteger@ # &, Select[Range[#, NextPrime@ #], CompositeQ]] == 4 &] (* Michael De Vlieger, May 27 2016 *)
Join[{13,79},Select[Prime[Range[23,650]],PrimeQ[#+2]&&PrimeNu[#+1]==4&]] (* This program assumes the correctness of the conjecture by Charles R. Greathouse, IV, in the Comments. *) (* Harvey P. Dale, Jun 07 2019 *)
-
lista(nn)=forprime(p=2, nn, allp = []; forcomposite (c = p+1, nextprime(p+1), allp = Set(concat(allp, (factor(c)[,1])~));); if (#allp == 4, print1(p, ", "));); \\ Michel Marcus, May 28 2016
-
is(n)=if(!isprime(n), return(0)); if(isprime(n+2), return(omega(n+1)==4)); if(isprime(n+4), omega(n+1)+omega(n+2)+omega(n+3)==5, 0)
list(lim)=my(v=List(),t,p); lim\=1; for(e=4,logint(lim+2,3), p=precprime(3^e); if(isprime(p+4) && is(p), listput(v,p))); for(e=4,logint(lim+3,2), p=precprime(2^e); if(isprime(p+4) && is(p), listput(v,p))); p=2; forprime(q=3,lim+2, if(q-p==2 && omega(p+1)==4, listput(v,p)); p=q); Set(v) \\ Charles R Greathouse IV, Jun 01 2016
A075585
Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 5.
Original entry on oeis.org
19, 23, 37, 43, 97, 127, 223, 499, 673, 1213, 2309, 2729, 6089, 6269, 7589, 8969, 9239, 9281, 10709, 11549, 11969, 12539, 13397, 14321, 15329, 16829, 17489, 18059, 19139, 19379, 19469, 19889, 20747, 21317, 21839, 22109, 22619, 23369, 23561, 24179
Offset: 1
-
a:=[]; for k in PrimesInInterval(2,25000) do b:={}; for s in [k..NextPrime(k)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 5 then Append(~a,k); end if; end for; a; // Marius A. Burtea, Sep 26 2019
-
dpd5Q[p_]:=Length[Union[Flatten[FactorInteger[#][[All,1]]&/@Range[ p+1,NextPrime[ p]-1]]]]==5; Select[Prime[Range[3000]],dpd5Q] (* Harvey P. Dale, Aug 11 2021 *)
A075586
Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 6.
Original entry on oeis.org
31, 47, 67, 103, 109, 163, 193, 277, 313, 349, 379, 397, 457, 463, 487, 877, 1087, 1093, 1279, 1303, 1567, 1873, 2269, 2347, 2473, 2797, 3697, 4447, 4789, 4999, 5077, 5413, 5503, 5923, 6007, 6217, 6469, 6997, 7603, 7639, 7723, 7933, 8779, 9277, 10159
Offset: 1
Between 31 and the next prime 37, there are 5 composite numbers whose prime divisors are respectively for 32: {2}, 33: {3,11}, 34: {2,17}, 35: {5,7} and 36: {2,3}; hence, these distinct prime divisors are {2,3,5,7,11,17}, the number of these distinct prime divisors is 6, so 31 is a term. - _Bernard Schott_, Sep 26 2019
-
a:=[]; for k in PrimesInInterval(2,10000) do b:={}; for s in [k..NextPrime(k)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 6 then Append(~a,k); end if; end for; a; // Marius A. Burtea, Sep 26 2019
-
Select[Partition[Prime[Range[1250]],2,1],Length[Union[Flatten[ FactorInteger/@ Range[ #[[1]]+1,#[[2]]-1],1][[All,1]]]]==6&][[All,1]] (* Harvey P. Dale, May 25 2020 *)
A075587
Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 7.
Original entry on oeis.org
53, 61, 157, 229, 307, 439, 613, 757, 769, 823, 853, 859, 883, 907, 937, 967, 1009, 1297, 1423, 1429, 1447, 1483, 1489, 1549, 1597, 1663, 1693, 1993, 2083, 2137, 2203, 2239, 2389, 2437, 2659, 2689, 2707, 2749, 2833, 2857, 2953, 3019, 3037, 3163, 3187
Offset: 1
-
pd[n_]:=Transpose[FactorInteger[n]][[1]]; Transpose[Select[ Partition[ Prime[ Range[500]],2,1],Length[Union[Flatten[ pd/@Range[First[#]+1, Last[#]-1]]]] == 7&]][[1]] (* Harvey P. Dale, Jun 15 2013 *)
Select[Prime@ Range@ 500, Length@ Union@ Flatten@ Map[First /@ FactorInteger@ # &, Select[Range[#, NextPrime@ #], CompositeQ]] == 7 &] (* Michael De Vlieger, May 27 2016 *)
A075588
Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 8.
Original entry on oeis.org
73, 83, 131, 167, 173, 251, 331, 383, 443, 563, 643, 739, 971, 1123, 1223, 1367, 1579, 1609, 1783, 1867, 1999, 2293, 2539, 2617, 2683, 3083, 3217, 3253, 3343, 3457, 3847, 4003, 4513, 4783, 4813, 4969, 5167, 5233, 5527, 5737, 5779, 5839, 5857, 6199, 6733
Offset: 1
For p = 131, the next prime number is 137. The numbers between 131 and 137 and the prime factors are respectively 132 { 2, 3, 11 }, 133 { 7, 19 }, 134 { 2, 67 }, 135 { 3, 5 }, 136 { 2, 17 }. The set of prime divisors is { 2, 3, 5, 7, 11, 17, 19, 67 } and has 8 elements, so 131 is a term. - _Marius A. Burtea_, Sep 26 2019
-
a:=[]; for p in PrimesInInterval(2,7000) do b:={}; for s in [p..NextPrime(p)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 8 then Append(~a,p); end if; end for; a; // Marius A. Burtea, Sep 26 2019
-
Select[Partition[Prime[Range[1000]],2,1],Length[Union[ Flatten[ FactorInteger[ Range[ #[[1]]+1,#[[2]]-1]],1][[All,1]]]]==8&][[All,1]] (* Harvey P. Dale, Dec 26 2019 *)
A075589
Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 9.
Original entry on oeis.org
89, 151, 233, 257, 263, 271, 353, 367, 373, 503, 541, 571, 587, 601, 647, 653, 727, 733, 751, 977, 991, 1013, 1181, 1291, 1321, 1433, 1453, 1621, 1753, 1861, 2281, 2371, 2377, 2671, 3061, 3079, 3203, 3323, 3793, 4051, 4073, 4283, 4357, 4519, 4591, 4639
Offset: 1
For p = 233, the next prime number is 239. The numbers between 233 and 237 and the prime divisors are respectively 234 {2, 3, 13}, 235 {5, 47}, 236 {2, 59}, 237 {3, 79 }, 238 {2, 7, 17}. The set of prime divisors is {2, 3, 5, 7, 13, 17, 47, 59, 79} and has 9 elements, so 233 is a term.
-
a:=[]; for p in PrimesInInterval(2,5000) do b:={}; for s in [p..NextPrime(p)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 9 then Append(~a,p); end if; end for; a; // Marius A. Burtea, Sep 26 2019
Showing 1-10 of 13 results.
Comments