A061356 Triangle read by rows: T(n, k) is the number of labeled trees on n nodes with maximal node degree k (0 < k < n).
1, 2, 1, 9, 6, 1, 64, 48, 12, 1, 625, 500, 150, 20, 1, 7776, 6480, 2160, 360, 30, 1, 117649, 100842, 36015, 6860, 735, 42, 1, 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 2
Examples
Triangle begins 1; 2, 1; 9, 6, 1; 64, 48, 12, 1; 625, 500, 150, 20, 1; 7776, 6480, 2160, 360, 30, 1; ... From _Peter Bala_, Sep 21 2012: (Start) O.g.f.'s for the diagonals begin: 1/(1-x) = 1 + x + x^2 + x^3 + ... 2*x/(1-x)^3 = 2 + 6*x + 12*x^3 + ... A002378(n+1) (9+3*x)/(1-x)^5 = 9 + 48*x + 150*x^2 + ... 3*A004320(n+1) The numerator polynomials are the row polynomials of A155163. (End)
References
- L. Comtet, Analyse Combinatoire, P.U.F., Paris 1970. Volume 1, p 81.
- L. Comtet, Advanced Combinatorics, Reidel, 1974.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- A. Avron and N. Dershowitz, Cayley's Formula, A Page From The Book, Amer. Math. Monthly, Vol. 123, No. 7, Aug.-Sep. 2016, 699-700 (2).
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x))
- W. Bomfim, Bijection between rooted forests and multigraphs without cycles except one loop in each connected component. [From _Washington Bomfim_, Sep 04 2010]
- J. W. Moon, Another proof of Cayley's formula for counting trees, Amer. Math. Monthly, Vol. 70, No. 8, Oct. 1963, 846-847.
- Jim Pitman, Coalescent Random Forests, Technical Report No. 457, Department of Statistics, University of California.
- Jim Pitman, Coalescent Random Forests, Journal of Combinatorial Theory, Series A, Volume 85, Issue 2, February 1999, Pages 165-193.
- Paul R. F. Schumacher, Descents in parking functions, J. Integer Seq., Vol. 21 (2018), Article 18.2.3.
- Eric Weisstein's World of Mathematics, Abel Polynomial.
- Wikipedia, Lambert W function
- J. Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan J., 3(1999) 1, 45-54.
Crossrefs
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0,...) as column 0 to the triangle. BellMatrix(n -> (n+1)^n, 12); # Peter Luschny, Jan 21 2016
-
Mathematica
nn = 7; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y t], {x, 0, nn}], {x, y}], 1]] // Flatten (* Geoffrey Critzer, Feb 10 2012 *) T[n_, m_] := T[n, m] = Binomial[n, m]*Sum[m^k*T[n-m, k], {k, 1, n-m}]; T[n_, n_] = 1; Table[T[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *) Table[Binomial[n - 2, k - 1]*(n - 1)^(n - k - 1), {n, 2, 12}, {k, 1, n - 1}] // Flatten (* G. C. Greubel, Nov 12 2017 *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]]; rows = 10; M = BellMatrix[(# + 1)^#&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
Maxima
create_list(binomial(n,k)*(n+1)^(n-k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 01 2014 */
-
PARI
for(n=2,11, for(k=1,n-1, print1(binomial(n-2, k-1)*(n-1)^(n-k-1), ", "))) \\ G. C. Greubel, Nov 12 2017
-
Sage
# uses[bell_matrix from A264428] # Adds (1,0,0,0,...) as column 0 to the triangle. bell_matrix(lambda n: (n+1)^n, 12) # Peter Luschny, Jan 21 2016
Formula
T(n, k) = binomial(n-2, k-1)*(n-1)^(n-k-1).
E.g.f.: (-LambertW(-y)/y)^(x+1)/(1+LambertW(-y)). - Vladeta Jovovic
From Peter Bala, Sep 21 2012: (Start)
Let T(x) = Sum_{n >= 0} n^(n-1)*x^n/n! denote the tree function of A000169. E.g.f.: F(x,t) := exp(t*T(x)) - 1 = -1 + {T(x)/x}^t = t*x + t*(2 + t)*x^2/2! + t*(9 + 6*t + t^2)*x^3/3! + ....
The compositional inverse with respect to x of (1/t)*F(x,t) is the e.g.f. for a signed version of the row reverse of A028421.
The row generating polynomials are the Abel polynomials A(n,x) = x*(x+n)^(n-1) for n >= 1.
Define B(n,x) = x^n/(1+n*x)^(n+1) = (-1)^n*A(-n,-1/x) for n >= 1. The k-th column entries are the coefficients in the formal series expansion of x^k in terms of B(n,x). For example, Col. 1: x = B(1,x) + 2*B(2,x) + 9*B(3,x) + 64*B(4,x) + ..., Col. 2: x^2 = B(2,x) + 6*B(3,x) + 48*B(4,x) + 500*B(5,x) + ... Compare with A059297.
n-th row sum = A000272(n+1).
Row reverse triangle is A139526.
The o.g.f.'s for the diagonals of the triangle are the rational functions R(n,x)/(1-x)^(2*n+1), where R(n,x) are the row polynomials of A155163. See below for examples.
(End)
T(n,m) = C(n,m)*Sum_{k=1..n-m} m^k*T(n-m,k), T(n,n) = 1. - Vladimir Kruchinin, Mar 31 2015
Comments