cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A051015 Zeisel numbers.

Original entry on oeis.org

105, 1419, 1729, 1885, 4505, 5719, 15387, 24211, 25085, 27559, 31929, 54205, 59081, 114985, 207177, 208681, 233569, 287979, 294409, 336611, 353977, 448585, 507579, 982513, 1012121, 1073305, 1242709, 1485609, 2089257, 2263811, 2953711, 3077705, 3506371, 3655861, 3812599
Offset: 1

Views

Author

Keywords

Comments

Pick any integers A and B and consider the linear recurrence relation given by p(0) = 1, p(i + 1) = A*p(i) + B. If for some n > 2, p(1), p(2), ..., p(n) are distinct primes, then the product of these primes is called a Zeisel number.

Crossrefs

Cf. A027746, A061422, A252094 (A values), A252095 (B values).

Programs

  • Haskell
    a051015 n = a051015_list !! (n-1)
    a051015_list = filter zeisel [3, 5 ..] where
       zeisel x = 0 `notElem` ds && length ds > 2 &&
             all (== 0) (zipWith mod (tail ds) ds) && all (== q) qs
             where q:qs = (zipWith div (tail ds) ds)
                   ds = zipWith (-) (tail ps) ps
                   ps = 1 : a027746_row x
    -- Reinhard Zumkeller, Dec 15 2014
  • Mathematica
    maxTerm = 3*10^7; ZeiselQ[n_] := Module[{a, b, pp, eq, r}, If[PrimeQ[n] || ! SquareFreeQ[n], False, pp = Join[{1}, FactorInteger[n][[All, 1]]]; If[Length[pp] <= 3, False, eq = Thread[Rest[pp] == b + a*Most[pp]]; r = Reduce[eq, {a, b}, Integers]; r =!= False]]]; p = 3; A051015 = Reap[While[p^3 < maxTerm, q = NextPrime[p]; While[p*q^2 < maxTerm, If[ ! IntegerQ[a = (q - p)/(p - 1)] || !IntegerQ[b = (p^2 - q)/(p - 1)], q = NextPrime[q]; Continue[]]; r = b + a*q; n = r*p*q; While[PrimeQ[r] && n < maxTerm, Sow[n]; r = b + a*r; n *= r]; q = NextPrime[q]]; p = NextPrime[p]]][[2, 1]]; A051015 = Select[Sort[A051015], ZeiselQ] (* Jean-François Alcover, Oct 31 2012, with much help from Giovanni Resta *)
  • PARI
    is_A051015(n)={#(n=factor(n)~)>2 & vecmax(n[2,])==1 & denominator(n[2,1]=(n[1,3]-n[1,2])/(n[1,2]-n[1,1]))==1 & #Set(n[1,]-n[2,1]*concat(1,vecextract(n[1,],"^-1")))==1} \\ - M. F. Hasler, Oct 31 2012
    

Extensions

More terms from David Wasserman, Feb 19 2002
Extended by Karsten Meyer, Jun 08 2006, but values were incorrect. M. F. Hasler, Oct 31 2012
Values up to a(70) computed by Jean-François Alcover and double-checked by M. F. Hasler, Oct 31 2012
Values < 10^15 by Lars Blomberg, Nov 02 2012

A061421 Primes of the form 2^n+n+1.

Original entry on oeis.org

2, 7, 71, 110427941548649020598956093796432407239217743554726184882600387580788973
Offset: 1

Views

Author

Jason Earls, May 02 2001

Keywords

Comments

Next term is 2^1884+1884+1, with 568 digits and is too large to include. - Emeric Deutsch, May 13 2006
The Wikipedia article "Zeisel number" gives a historical connection to A051015. - Jonathan Sondow, Oct 17 2017

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime(2^n+n+1)=true then 2^n+n+1 else fi end: seq(a(n),n=0..1000); # Emeric Deutsch, May 13 2006
  • Mathematica
    {ta={{0}}, tb={{0}}};Do[g=n;s=2^n+n+1; If[PrimeQ[s], Print[n];ta=Append[ta, n]; tb=Append[tb, s]], {n, 1, 10000}];{ta, tb, g} (* Labos Elemer, Nov 19 2004 *)

Extensions

Edited by N. J. A. Sloane, May 04 2007

A100359 Numbers k such that 2^k + k + 1 is prime.

Original entry on oeis.org

0, 2, 6, 236, 1884, 51380, 75764
Offset: 1

Views

Author

Labos Elemer, Nov 19 2004

Keywords

Comments

a(8) > 500000. - Robert Price, May 24 2014

Crossrefs

Programs

  • Mathematica
    {ta={{0}}, tb={{0}}};Do[g=n;s=2^n+n+1; If[PrimeQ[s], Print[n];ta=Append[ta, n]; tb=Append[tb, s]], {n, 1, 10000}];{ta, tb, g}
  • PARI
    is(n)=ispseudoprime(2^n+n+1) \\ Charles R Greathouse IV, Feb 20 2017

Formula

a(n) = A061422(n) - 1.

Extensions

a(6) from A061422 Max Alekseyev, Feb 08 2009
a(7) from Giovanni Resta, Mar 19 2014

A173053 Numbers n such that 2^(2*n)+2*n+1 is a prime.

Original entry on oeis.org

0, 1, 3, 118, 942, 25690, 37882
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2010

Keywords

Comments

Studying primes of the form 2^(x-1)+x for x=2n+1 leads to A061422. The six odd x in A061422 give the known solutions shown here. [R. J. Mathar]
The associated primes are 1+1 = 2, 2^2+3 = 7, 2^6+7 = 71,
2^236+237 = 110427941548649020598956093796432407239217743554726184882600387580788973;
2^1884+1885 = 1382012053...8525348701 (Most inner digits omitted. The number of digits of the prime grows roughly as log_10(4^n) = 0.61*n.)

Crossrefs

Cf. A061422.

Programs

  • Mathematica
    Select[Range[0, 2000], PrimeQ[2^(2 #) + 2 # + 1] &] (* Vincenzo Librandi, Jun 07 2014 *)

Formula

a(n) = floor( A061422(n) / 2). - Michel Marcus, Jun 07 2014

Extensions

Display of very long primes truncated by R. J. Mathar, Feb 15 2010
a(7) from Vincenzo Librandi, Jun 07 2014
Showing 1-4 of 4 results.