cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062326 Primes p such that p^2 - 2 is also prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 19, 29, 37, 43, 47, 61, 71, 89, 103, 107, 127, 131, 139, 173, 191, 211, 223, 233, 239, 257, 293, 313, 337, 359, 421, 443, 449, 467, 491, 523, 541, 569, 587, 607, 653, 677, 719, 727, 733, 743, 751, 757, 761, 797, 811, 863, 881, 1013, 1021
Offset: 1

Views

Author

Reiner Martin, Jul 12 2001

Keywords

Comments

When p and p^2 - 2 are both prime, the fundamental solution of the Pell equation x^2 - n*y^2 = 1, for n = p^2 - 2, is x = p^2 - 1 and y = p. See A109748 for the case of n and x both prime. - T. D. Noe, May 19 2007
3 is the only prime p such that p^2 + 2 and p^2 - 2 are both primes. - Jaroslav Krizek, Nov 25 2013 (note that p^2 + 2 is composite for all primes p >= 5. - Joerg Arndt, Jan 10 2015)
For all primes p except for p = 3, p^2 + 2 is multiple of 3 (see A061725). - Zak Seidov, Feb 19 2015

Crossrefs

Cf. A049002 (p^2-2).

Programs

  • Haskell
    import Data.List (elemIndices)
    a062326 = a000040 . a137291
    a062326_list = map (a000040 . (+ 1)) $
                   elemIndices 1 $ map a010051' a049001_list
    -- Reinhard Zumkeller, Jul 30 2015
  • Magma
    [ p: p in PrimesUpTo(1100) | IsPrime(p^2-2) ]; // Klaus Brockhaus, Jan 01 2009
    
  • Mathematica
    Select[Prime[Range[500]], PrimeQ[#^2 - 2] &] (* Harvey P. Dale, Sep 20 2011 *)
  • PARI
    { n=0; forprime (p=2, 5*10^5, if (isprime(p^2 - 2), write("b062326.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 05 2009