cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A118940 Primes p such that (p^2+7)/8 is prime.

Original entry on oeis.org

3, 7, 17, 23, 41, 47, 71, 89, 103, 113, 127, 137, 151, 191, 193, 199, 223, 263, 271, 281, 337, 359, 401, 439, 457, 503, 521, 569, 577, 599, 641, 719, 727, 751, 839, 857, 863, 881, 887, 929, 991, 1009, 1033, 1097, 1103, 1151, 1193, 1217, 1231, 1279, 1297, 1303
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 8 divides q^2+7.

Crossrefs

Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118941 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2+7)/8]&]
  • PARI
    lista(nn) = {forprime(p=2, nn, iferr(if (isprime(q=(p^2+7)/8), print1(q, ", ")), E, ););} \\ Michel Marcus, Feb 18 2018

A118939 Primes p such that (p^2+3)/4 is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 29, 31, 41, 43, 67, 83, 101, 109, 139, 151, 157, 179, 181, 199, 211, 223, 239, 263, 277, 283, 307, 311, 337, 347, 353, 379, 389, 419, 431, 463, 491, 557, 577, 587, 619, 659, 673, 739, 757, 797, 809, 811, 829, 853, 907, 911, 953, 991, 1051
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 4 divides q^2+3. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118940, A118941 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2+3)/4]&]

A137270 Primes p such that p^2 - 6 is also prime.

Original entry on oeis.org

3, 5, 7, 13, 17, 23, 47, 53, 67, 73, 83, 97, 107, 113, 167, 193, 197, 263, 293, 317, 367, 373, 383, 457, 463, 467, 487, 503, 557, 593, 607, 643, 647, 673, 677, 683, 773, 787, 797, 823, 827, 857, 877, 887, 947, 1033, 1063, 1087, 1103, 1187, 1193, 1223, 1303
Offset: 1

Views

Author

Ben de la Rosa and Johan Meyer (meyerjh.sci(AT)ufa.ac.za), Mar 13 2008

Keywords

Comments

Each of the primes p = 2,3,5,7,13 has the property that the quadratic polynomial phi(x) = x^2 + x - p^2 takes on only prime values for x = 1,2,...,2p-2; each case giving exactly one repetition, in phi(p-1) = -p and phi(p) = p.
The only common term in A062718 and A137270 is 5. - Zak Seidov, Jun 16 2015

Examples

			The (2 x 7 - 2) -1 = 11 primes given by the polynomial x^2 + x - 7^2 for x = 1, 2, ..., 2 x 7 - 2 are -47, -43, -37, -29, -19, -7, 7, 23, 41, 61, 83, 107.
		

References

  • F. G. Frobenius, Uber quadratische Formen, die viele Primzahlen darstellen, Sitzungsber. d. Konigl. Acad. d. Wiss. zu Berlin, 1912, 966 - 980.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1350) | IsPrime(p^2-6)]; // Vincenzo Librandi, Apr 14 2013
  • Maple
    isA028879 := proc(n) isprime(n^2-6) ; end: isA137270 := proc(n) isprime(n) and isA028879(n) ; end: for i from 1 to 300 do if isA137270(ithprime(i)) then printf("%d, ",ithprime(i)) ; fi ; od: # R. J. Mathar, Mar 16 2008
  • Mathematica
    Select[Prime[Range[2,300]],PrimeQ[#^2-6]&] (* Harvey P. Dale, Jul 24 2012 *)

Formula

A000040 INTERSECT A028879. - R. J. Mathar, Mar 16 2008

Extensions

Corrected and extended by R. J. Mathar, Mar 16 2008

A118941 Primes p such that (p^2-5)/4 is prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 31, 41, 43, 53, 61, 71, 79, 83, 89, 97, 101, 107, 109, 113, 131, 137, 167, 173, 179, 193, 229, 241, 251, 263, 269, 277, 281, 283, 307, 311, 317, 349, 353, 373, 383, 419, 431, 439, 461, 463, 467, 563, 571, 577, 593, 607, 613, 619, 647
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 4 divides q^2-5. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118940 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2-5)/4]&]

A118942 Primes p such that (p^2-13)/12 is prime.

Original entry on oeis.org

7, 13, 17, 19, 23, 31, 37, 41, 53, 67, 71, 73, 89, 103, 107, 113, 131, 139, 157, 163, 181, 199, 211, 233, 239, 257, 269, 283, 307, 311, 337, 359, 373, 379, 401, 419, 463, 487, 491, 499, 509, 521, 577, 593, 607, 617, 631, 647, 653, 683, 701, 733, 761, 769, 787
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>3, we have q=6k+-1 for some k, which makes it easy to show that 12 divides q^2-13. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118940 and A118941.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2-13)/12]&]

A173627 Primes p such that p^2 + 6, p^2 + 12 and p^2 + 18 are all prime.

Original entry on oeis.org

5, 19, 61, 971, 1451, 2711, 3061, 3449, 6011, 15139, 15241, 21821, 27851, 39839, 51749, 62459, 75679, 76081, 82591, 97001, 121039, 121441, 122299, 135581, 161569, 162671, 196681, 196831, 200881, 214741, 217271, 222931, 242069, 243119, 254161
Offset: 1

Views

Author

Zak Seidov, Nov 09 2010

Keywords

Comments

For p > 2, p^2 + 24 is composite (divisible by 5). - Zak Seidov, Sep 07 2018

Crossrefs

Cf. A062718 (p and p^2 + 6 are both prime).

Programs

  • Magma
    [p: p in PrimesUpTo(600000)|IsPrime(p^2+6) and IsPrime(p^2+12) and IsPrime(p^2+18)] // Vincenzo Librandi, Dec 13 2010
    
  • Mathematica
    okQ[n_]:=Module[{p2=n^2},And@@PrimeQ[{p2+6,p2+12,p2+18}]]; Select[Prime[Range[30000]],okQ] (* Harvey P. Dale, Dec 18 2010 *)
  • PARI
    isok(p) = isprime(p) && isprime(p^2+6) && isprime(p^2+12) && isprime(p^2+18); \\ Michel Marcus, Sep 08 2018

A245048 Primes p such that p^2 + 28 is prime.

Original entry on oeis.org

3, 5, 11, 13, 17, 19, 23, 41, 43, 47, 53, 67, 79, 83, 89, 97, 109, 131, 137, 149, 157, 163, 167, 179, 181, 193, 211, 223, 239, 241, 251, 263, 277, 281, 311, 317, 331, 379, 397, 401, 409, 421, 431, 439, 443, 449, 457, 467, 479, 541, 569, 599, 643, 647, 673
Offset: 1

Views

Author

Chai Wah Wu, Jul 10 2014

Keywords

Comments

7 of the first 8 odd primes are in this list.

Examples

			3 is in the sequence because 3^2 + 28 = 37, which is also prime.
5 is in the sequence because 5^2 + 28 = 53, which is also prime.
7 is not in the sequence because 7^2 + 28 = 77 = 7 * 11.
		

Crossrefs

Cf. A062324 (p^2+4), A062718(p^2+6), A243367(p^2+10).

Programs

  • Maple
    A245048:=n->`if`(isprime(n) and isprime(n^2+28), n, NULL): seq(A245048(n), n=1..10^3); # Wesley Ivan Hurt, Jul 24 2014
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[#^2 + 28] &] (* Alonso del Arte, Jul 12 2014 *)
  • Python
    import sympy
    [sympy.prime(n) for n in range(1,10**6) if sympy.ntheory.isprime(sympy.prime(n)**2+28)]

A258992 Primes p such that p^2 - 8 is also prime.

Original entry on oeis.org

5, 7, 11, 17, 19, 23, 31, 37, 53, 67, 101, 103, 149, 163, 173, 191, 227, 229, 241, 257, 269, 271, 313, 347, 353, 359, 367, 373, 383, 431, 467, 479, 487, 523, 541, 563, 577, 599, 613, 619, 647, 653, 661, 733, 761, 773, 823, 829, 859, 863, 919, 941, 1061, 1087
Offset: 1

Views

Author

Zak Seidov, Jun 16 2015

Keywords

Comments

The first appearances of 2..6 consecutive primes in the sequence are: {31,37}, {5, 7, 11}, {353, 359, 367, 373}, {1293199, 1293203, 1293233, 1293239, 1293247}, {3982031, 3982037, 3982057, 3982067, 3982073, 3982079}.
Initial terms of the sets of exactly 6 consecutive primes: {3982031, 5495989, 33057589, 255414437, 495180067, 558985507}.

Examples

			From _K. D. Bajpai_, Jun 18 2015: (Start)
a(3) = 11: both 11 and 11^2 - 8 = 113 are prime.
a(4) = 17: both 17 and 17^2 - 8 = 281 are prime.
(End)
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5000) | IsPrime(p^2-8)];  // K. D. Bajpai, Jun 18 2015
  • Mathematica
    Select[Prime[Range[5000]], PrimeQ[#^2-8]&]  (* K. D. Bajpai, Jun 18 2015 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(p^2-8), print1(p, ", "))); \\ Michel Marcus, Jun 16 2015
    
Showing 1-8 of 8 results.