cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A095996 a(n) = largest divisor of n! that is coprime to n.

Original entry on oeis.org

1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, 479001600, 868725, 14350336, 638512875, 20922789888000, 14889875, 6402373705728000, 14849255421, 7567605760000, 17717861581875, 1124000727777607680000, 2505147019375
Offset: 1

Views

Author

Robert G. Wilson v, Jul 19 2004, based on a suggestion from Leroy Quet, Jun 18 2004

Keywords

Comments

The denominators of the coefficients in Taylor series for LambertW(x) are 1, 1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, ..., which is this sequence prefixed by 1. (Cf. A227831.) - N. J. A. Sloane, Aug 02 2013
The second Mathematica program is faster than the first for large n. - T. D. Noe, Sep 07 2013

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., Eq. (5.66).

Crossrefs

Programs

  • Magma
    [Denominator(n^n/Factorial(n)): n in [1..25]]; // Vincenzo Librandi, Sep 04 2014
    
  • Maple
    series(LambertW(x),x,30); # N. J. A. Sloane, Jan 08 2021
  • Mathematica
    f[n_] := Select[Divisors[n! ], GCD[ #, n] == 1 &][[ -1]]; Table[f[n], {n, 30}]
    Denominator[Exp[Table[Limit[Zeta[s]*Sum[(1 - If[Mod[k, n] == 0, n, 0])/k^(s - 1), {k, 1, n}], s -> 1], {n, 1, 30}]]] (* Conjecture Mats Granvik, Sep 09 2013 *)
    Table[Denominator[n^n/n!], {n, 30}] (* Vincenzo Librandi, Sep 04 2014 *)
  • Maxima
    a(n):=sum((-1)^(n-j)*binomial(n,j)*(j/n+1)^n,j,0,n);
    makelist(num(a(n)),n,1,20); /* Vladimir Kruchinin, Jun 02 2013 */
    
  • PARI
    a(n) = denominator(n^n/n!); \\ G. C. Greubel, Nov 14 2017

Formula

a(p) = (p-1)!.
a(n) = n!/A051696(n) = (n-1)!/A062763(n).
a(n) = numerator(Sum_{j = 0..n} (-1)^(n-j)*binomial(n,j)*(j/n+1)^n ). - Vladimir Kruchinin, Jun 02 2013
a(n) = denominator(n^n/n!). - Vincenzo Librandi Sep 04 2014

A051696 Greatest common divisor of n! and n^n.

Original entry on oeis.org

1, 2, 3, 8, 5, 144, 7, 128, 81, 6400, 11, 248832, 13, 100352, 91125, 32768, 17, 429981696, 19, 163840000, 6751269, 63438848, 23, 247669456896, 15625, 1417674752, 1594323, 80564191232, 29, 25076532510720000000, 31, 2147483648
Offset: 1

Views

Author

Keywords

Comments

a(n) also equals the smallest positive integer such that lcm(a(1), a(2), a(3), ... a(n)) = n!, for every positive integer n. - Leroy Quet, Apr 28 2007

Examples

			a(4) = 8 since 4! = 24 and 4^4 = 256 and gcd(24, 256) = 8.
lcm(a(1), a(2), a(3), a(4), a(5), a(6)) = lcm(1, 2, 3, 8, 5, 144) = 6! = 720. (See comment.)
		

Programs

Formula

a(n) = Product_{p|n} p^(sum{k >= 1} floor(n/p^k)), where the product runs over the distinct primes p that divide n. - Leroy Quet, Apr 28 2007
a(n) = n*A062763(n). - R. J. Mathar, Mar 11 2017
a(n) = (numerator of B(n, 1/n))/n^(n - 1), where B(.,.) is the Euler beta function. - Arkadiusz Wesolowski, Nov 22 2017
a(p) = p for p prime. - Peter Luschny, Nov 29 2017

Extensions

More terms from James Sellers, Dec 08 1999
Showing 1-2 of 2 results.