cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A067911 Product of gcd(k,n) for 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 8, 5, 72, 7, 128, 81, 800, 11, 41472, 13, 6272, 30375, 32768, 17, 3359232, 19, 20480000, 750141, 247808, 23, 13759414272, 15625, 1384448, 1594323, 5035261952, 29, 30233088000000, 31, 2147483648, 235782657, 37879808
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Mar 10 2002

Keywords

Crossrefs

In A018804 the product is replaced by sum.
Product of terms in n-th row of A050873.
Cf. A000010 (comments on product formulas).

Programs

  • Maple
    with(numtheory): a := n -> mul(d^phi(n/d), d = divisors(n)):
    seq(a(i), i = 1..34); # Peter Luschny, Apr 07 2013
  • Mathematica
    a[n_] := Product[d^EulerPhi[n/d], {d, Divisors[n]}];
    Array[a, 34] (* Jean-François Alcover, Jun 03 2019 *)
  • PARI
    a(n) = prod(k=1, n, gcd(k, n)); \\ Michel Marcus, Aug 23 2016
  • Sage
    A067911 = lambda n: mul(gcd(n,i) for i in range(n))
    [A067911(n) for n in (1..34)] # Peter Luschny, Apr 07 2013
    

Formula

a(n) = Product_{d|n} d^phi(n/d). - Vladeta Jovovic, Mar 08 2004
a(n) = n*A051190(n). - Peter Luschny, Apr 07 2013
a(n) = Product_{k=1..n} (n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))) where phi = A000010. - Richard L. Ollerton, Nov 07 2021

Extensions

Extended and edited by John W. Layman, Mar 14 2002

A095996 a(n) = largest divisor of n! that is coprime to n.

Original entry on oeis.org

1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, 479001600, 868725, 14350336, 638512875, 20922789888000, 14889875, 6402373705728000, 14849255421, 7567605760000, 17717861581875, 1124000727777607680000, 2505147019375
Offset: 1

Views

Author

Robert G. Wilson v, Jul 19 2004, based on a suggestion from Leroy Quet, Jun 18 2004

Keywords

Comments

The denominators of the coefficients in Taylor series for LambertW(x) are 1, 1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, ..., which is this sequence prefixed by 1. (Cf. A227831.) - N. J. A. Sloane, Aug 02 2013
The second Mathematica program is faster than the first for large n. - T. D. Noe, Sep 07 2013

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., Eq. (5.66).

Crossrefs

Programs

  • Magma
    [Denominator(n^n/Factorial(n)): n in [1..25]]; // Vincenzo Librandi, Sep 04 2014
    
  • Maple
    series(LambertW(x),x,30); # N. J. A. Sloane, Jan 08 2021
  • Mathematica
    f[n_] := Select[Divisors[n! ], GCD[ #, n] == 1 &][[ -1]]; Table[f[n], {n, 30}]
    Denominator[Exp[Table[Limit[Zeta[s]*Sum[(1 - If[Mod[k, n] == 0, n, 0])/k^(s - 1), {k, 1, n}], s -> 1], {n, 1, 30}]]] (* Conjecture Mats Granvik, Sep 09 2013 *)
    Table[Denominator[n^n/n!], {n, 30}] (* Vincenzo Librandi, Sep 04 2014 *)
  • Maxima
    a(n):=sum((-1)^(n-j)*binomial(n,j)*(j/n+1)^n,j,0,n);
    makelist(num(a(n)),n,1,20); /* Vladimir Kruchinin, Jun 02 2013 */
    
  • PARI
    a(n) = denominator(n^n/n!); \\ G. C. Greubel, Nov 14 2017

Formula

a(p) = (p-1)!.
a(n) = n!/A051696(n) = (n-1)!/A062763(n).
a(n) = numerator(Sum_{j = 0..n} (-1)^(n-j)*binomial(n,j)*(j/n+1)^n ). - Vladimir Kruchinin, Jun 02 2013
a(n) = denominator(n^n/n!). - Vincenzo Librandi Sep 04 2014

A064446 a(n) = gcd(n!, n^n, lcm(1, 2, ..., n)), or gcd(n^n, lcm(1, 2, ..., n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 12, 7, 8, 9, 40, 11, 72, 13, 56, 45, 16, 17, 144, 19, 80, 63, 176, 23, 144, 25, 208, 27, 112, 29, 10800, 31, 32, 297, 544, 175, 864, 37, 608, 351, 800, 41, 6048, 43, 352, 675, 736, 47, 864, 49, 800, 459, 416, 53, 864, 275, 1568, 513, 928, 59, 21600, 61
Offset: 1

Views

Author

Labos Elemer, Oct 02 2001

Keywords

Comments

gcd(n^n, lcm(1..n)) must be limited to products of all the distinct prime divisors p of n. We can regard lcm(1..n) as the product of a "regular" factor r produced by primes that also divide n and a coprime factor s produced by primes that are coprime to n. Since the distinct prime divisors p of n are the only distinct prime divisors of n^n, we need only consider r and can ignore s when considering gcd(n^n, lcm(1..n)). Because r is the product of the largest power e_1 of each distinct prime divisor p, and since the power e_2 of the corresponding primes that divide n^n must always be such that e_2 >= e_1, it is sufficient to compute r to determine a(n). - Michael De Vlieger, Oct 26 2015

Examples

			n=6: a(6) = gcd(720, 60, 46656) = 12.
Since only 1 and 5 are relatively prime to 6, a(6) = lcm(1,2,3,4,5,6) / lcm(1,5) = 60/5 = 12.
		

Crossrefs

Cf. A000142, A000312, A051696. Equals A003418(n)/A038610(n).

Programs

  • GAP
    List([1..70],n->Gcd(Factorial(n),n^n,Lcm([1..n]))); # Muniru A Asiru, Mar 20 2018
  • Maple
    A064446 := n -> ilcm(seq(i,i=1..n))/ilcm(op(select(k->igcd(n,k)=1,[$1..n])));
    seq(A064446(i),i=0..61); # Peter Luschny, Jun 25 2011
    N:= 1000: # to get a(1) to a(N)
    Primes:= select(isprime, [2,seq(2*i+1,i=1..floor((N-1)/2))]):
    A:= Vector(N,1):
    for p in Primes do
      for d from 1 to floor(log[p](N)) do
        for j from p^d to min(N, p^(d+1)-p) by p do
           A[j]:= A[j]*p^d
    od od od:
    convert(A,list); # Robert Israel, Oct 26 2015
  • Mathematica
    Table[GCD[n!,n^n,LCM@@Range[n]],{n,70}] (* Harvey P. Dale, Jun 25 2011 *)
    f[n_] := Block[{p = First /@ FactorInteger@ n}, Times @@ Power @@@ Transpose[{p, Floor@ Log[#, n] & /@ p}]]; {1}~Join~Table[f@ n, {n, 2, 10000}] (* Michael De Vlieger, Oct 26 2015 *)
  • PARI
    L=1; for (n=1, 1000, L=lcm(L, n); write("b064446.txt", n, " ", gcd(n^n, L))) \\ Harry J. Smith, Sep 14 2009
    
  • PARI
    a(n)=my(f=factor(n)); for(i=1,#f~, f[i,2]=logint(n,f[i,1])); factorback(f) \\ Charles R Greathouse IV, Nov 19 2015
    
  • PARI
    a(n) = gcd(n^n, lcm(vector(n, k, k))); \\ Michel Marcus, Mar 18 2018
    

Formula

a(n) = gcd(A000142(n), A000312(n), A003418(n)) = gcd(A000312(n), A003418(n)) = gcd(A051696(n), A003418(n)).
a(n) = Product_{prime p | n} p^floor(log_p(n)). - Robert Israel, Oct 26 2015
a(n) = e^(Sum_{k=1..n} (floor(n^k/k) - floor((n^k - 1)/k))*Mangoldt(k)) where Mangoldt is the Mangoldt function. - Anthony Browne, Jun 16 2016

A062763 a(n) is the greatest common divisor of (n-1)! and n^n.

Original entry on oeis.org

1, 1, 1, 2, 1, 24, 1, 16, 9, 640, 1, 20736, 1, 7168, 6075, 2048, 1, 23887872, 1, 8192000, 321489, 2883584, 1, 10319560704, 625, 54525952, 59049, 2877292544, 1, 835884417024000000, 1, 67108864, 578739249, 36507222016, 187578125, 61628086298345472, 1
Offset: 1

Views

Author

Henry Bottomley, Jul 16 2001

Keywords

Comments

a(n) = 1 iff n is 1 or a prime.

Examples

			a(10) = gcd(9!, 10^10) = gcd(2^7*3^4*5*7, 2^10*5^10) = 2^7*5 = 640.
		

Crossrefs

Cf. A051696.

Programs

Formula

a(n) = A051696(n)/n.

A055774 Least common multiple of n! and n^n.

Original entry on oeis.org

1, 4, 54, 768, 75000, 233280, 592950960, 5284823040, 1735643790720, 5670000000000, 1035338990313196800, 17163493362892800, 145077660657859734604800, 9653278129532887449600
Offset: 1

Views

Author

Henry Bottomley, Jul 12 2000

Keywords

Crossrefs

Cf. A000142 (n!), A000312 (n^n), A051696 (gcd).

Programs

Formula

a(n) = lcm(A000312(n), A000142(n)) = A000312(n)*A000142(n)/A051696(n).

Extensions

More terms from James Sellers, Jul 13 2000
Showing 1-5 of 5 results.