cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062938 a(n) = n*(n+1)*(n+2)*(n+3)+1 = (n^2 + 3*n + 1)^2.

Original entry on oeis.org

1, 25, 121, 361, 841, 1681, 3025, 5041, 7921, 11881, 17161, 24025, 32761, 43681, 57121, 73441, 93025, 116281, 143641, 175561, 212521, 255025, 303601, 358801, 421201, 491401, 570025, 657721, 755161, 863041, 982081, 1113025, 1256641
Offset: 0

Views

Author

Amarnath Murthy, Jul 05 2001

Keywords

Comments

a(n) = product of first four terms of an arithmetic progression + n^4, where the first term is 1 and the common difference is n. E.g. a(1) = 1*2*3*4 +1^4 =25, a(4) = 1*5*9*13 + 4^4= 841 etc. - Amarnath Murthy, Sep 19 2003
Is it possible for one of the squares to be the sum of two or more lesser squares each used only once? - J. M. Bergot, Feb 17 2011
Yes, in fact a(1)-a(11) are examples. - Charles R Greathouse IV, Jun 28 2011
This sequence demonstrates that the product of any 4 consecutive integers plus 1 is a square. The square roots are in A028387. - Harvey P. Dale, Oct 19 2011
The sum of three consecutive terms of the sequence is divisible by 3. The quotient is a square number: [a(n)+a(n+1)+a(n+2)]/3=(n^2+5*n+7)^2. - Carmine Suriano, Jan 23 2012
All terms end with 1 or 5. - Uri Geva, Jan 06 2024

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 19.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 85.

Crossrefs

Programs

  • Magma
    [(n^2+3*n+1)^2: n in [0..50]]; // G. C. Greubel, Dec 24 2022
    
  • Mathematica
    Table[(n^2+3*n+1)^2, {n,0,50}]
    Times@@#+1&/@Partition[Range[0,50],4,1]  (* Harvey P. Dale, Apr 02 2011 *)
  • PARI
    j=[]; for(n=0,70,j=concat(j,(n^2+3*n+1)^2)); j
    
  • PARI
    { for (n=0, 1000, write("b062938.txt", n, " ", (n^2 + 3*n + 1)^2) ) } \\ Harry J. Smith, Aug 14 2009
    
  • SageMath
    [(n^2+3*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022

Formula

a(n+1) = numerator( ((n+2)! + (n-2)!)/n! ), for n>=2. - Artur Jasinski, Jan 09 2007; corrected by Michel Marcus, Dec 25 2022
a(n) = A028387(n)^2. - Jaroslav Krizek, Oct 31 2010
a(n) = n*(n+1)*(n+2)*(n+3)+1^4 = 1*(1+n)*(1+2*n)*(1+3*n)+n^4 =(n^2+3*n+1)^2; in general, n*(n+k)*(n+2*k)*(n+3*k)+k^4 = k*(k+n)*(k+2*n)*(k+3*n)+n^4 = (n^2+3*k*n+k^2)^2. - Charlie Marion, Jan 13 2011
G.f.: (1+20*x+6*x^2-4*x^3+x^4)/(1-x)^5. - Colin Barker, Jun 30 2012
a(n) = A052762(n+3) + 1. - Bruce J. Nicholson, Apr 22 2017
Sum_{n>=0} 1/a(n) = (Pi^2/5)*(1+t^2) - 2*sqrt(5)*Pi*t/25 - 1, where t = tan(Pi*sqrt(5)/2). - Amiram Eldar, Apr 03 2022
E.g.f.: (1 +24*x +36*x^2 +12*x^3 +x^4)*exp(x). - G. C. Greubel, Dec 24 2022

Extensions

More terms from Jason Earls, Harvey P. Dale and Dean Hickerson, Jul 06 2001