cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A063260 Sextinomial (also called hexanomial) coefficient array.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 25, 27, 27, 25, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, 125, 104, 80, 56, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 126, 205, 305, 420, 540, 651, 735, 780
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2001

Keywords

Comments

The sequence of step width of this staircase array is [1,5,5,...], hence the degree sequence for the row polynomials is [0,5,10,15,...]=A008587.
The column sequences (without leading zeros) are for k=0..5 those of the lower triangular array A007318 (Pascal) and for k=6..9: A062989, A063262-4. Row sums give A000400 (powers of 6). Central coefficients give A063419; see also A018901.
This can be used to calculate the number of occurrences of a given roll of n six-sided dice, where k is the index: k=0 being the lowest possible roll (i.e., n) and n*6 being the highest roll.

Examples

			The irregular table T(n, k) begins:
n\k 0 1 2  3  4  5  6  7  8  9 10 11 12 13 14 15
1:  1
2:  1 1 1  1  1  1
3:  1 2 3  4  5  6  5  4  3  2  1
4:  1 3 6 10 15 21 25 27 27 25 21 15 10  6  3  1
...reformatted - _Wolfdieter Lang_, Oct 31 2015
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77,78.

Crossrefs

The q-nomial arrays for q=2..5 are: A007318 (Pascal), A027907, A008287, A035343 and for q=7: A063265, A171890, A213652, A213651.
Columns for k=0..9 (with some shifts) are: A000012, A000027, A000217, A000292, A000332, A000389, A062989, A063262, A063263, A063264.

Programs

  • Maple
    #Define the r-nomial coefficients for r = 1, 2, 3, ...
    rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)):
    #Display the 6-nomials as a table
    r := 6:  rows := 10:
    for n from 0 to rows do
    seq(rnomial(r,n,k), k = 0..(r-1)*n)
    end do;
    # Peter Bala, Sep 07 2013
  • Mathematica
    Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5)^n, x], {n, 0, 25}]] (* T. D. Noe, Apr 04 2011 *)
  • PARI
    concat(vector(5,k,Vec(sum(j=0,5,x^j)^k)))  \\ M. F. Hasler, Jun 17 2012

Formula

G.f. for row n: (Sum_{j=0..5} x^j)^n.
G.f. for column k: (x^(ceiling(k/5)))*N6(k, x)/(1-x)^(k+1) with the row polynomials from the staircase array A063261(k, m) and with N6(6,x) = 5 - 10*x + 10*x^2 - 5*x^3 + x^4.
T(n, k) = 0 if n=-1 or k<0 or k >= 5*n + 1; T(0, 0)=1; T(n, k) = Sum_{j=0..5} T(n-1, k-j) else.
T(n, k) = Sum_{i = 0..floor(k/6)} (-1)^i*binomial(n,i)*binomial(n+k-1-6*i,n-1) for n >= 0 and 0 <= k <= 5*n. - Peter Bala, Sep 07 2013
T(n, k) = Sum_{i = max(0,ceiling((k-2*n)/3)).. min(n,k/3)} binomial(n,i)*trinomial(n,k-3*i) for n >= 0 and 0 <= k <= 5*n. - Matthew Monaghan, Sep 30 2015

Extensions

More terms and corrected recurrence from Nicholas M. Makin (NickDMax(AT)yahoo.com), Sep 13 2002

A063262 Eighth column (k=7) of sextinomial array A063260.

Original entry on oeis.org

4, 27, 104, 305, 756, 1667, 3368, 6354, 11340, 19327, 31680, 50219, 77324, 116055, 170288, 244868, 345780, 480339, 657400, 887589, 1183556, 1560251, 2035224, 2628950, 3365180, 4271319, 5378832
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(4-5x+5x^3-4x^4+x^5)/(1-x)^8,{x,0,30}],x] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{4,27,104,305,756,1667,3368,6354},30] (* Harvey P. Dale, Mar 07 2023 *)

Formula

a(n) = A063260(n+2, 7 )= (n+1)*(n+2)*(n^5+32*n^4+413*n^3+2722*n^2+9432*n+10080)/7!.
G.f.: (4-5*x+5*x^3-4*x^4+x^5)/(1-x)^8; the numerator polynomial is N6(7, x) from row n=7 of array A063261.
a(n) = 4*C(n+2,2) + 15*C(n+2,3) + 20*C(n+2,4) + 15*C(n+2,5) + 6*C(n+2,6) + C(n+2,7) (see comment in A213888). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012

A063263 Ninth column (k=8) of sextinomial array A063260.

Original entry on oeis.org

3, 27, 125, 420, 1161, 2807, 6147, 12465, 23760, 43032, 74646, 124787, 202020, 317970, 488138, 732870, 1078497, 1558665, 2215875, 3103254, 4286579, 5846577, 7881525, 10510175, 13875030, 18145998, 23524452
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2001

Keywords

Crossrefs

Formula

a(n) = A063260(n+2, 8) = (n+1)*(n+2)*(n+3)*(n^5+38*n^4+587*n^3+4678*n^2+19896*n+20160)/8!.
G.f.: (3-10*x^2+15*x^3-9*x^4+2*x^5)/(1-x)^9; the numerator polynomial is N6(8, x) from row n=8 of array A063261.
a(n) = 3*C(n+2,2) + 18*C(n+2,3) + 35*C(n+2,4) + 35*C(n+2,5) + 21*C(n+2,6) + 7*C(n+2,7) + C(n+2,8) (see comment in A213888). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012

A063264 Tenth column (k=9) of sextinomial array A063260.

Original entry on oeis.org

2, 25, 140, 540, 1666, 4417, 10480, 22825, 46420, 89232, 163592, 288015, 489580, 806990, 1294448, 2026502, 3104030, 4661555, 6876100, 9977814, 14262622, 20107175, 27986400, 38493975, 52366080, 70508802
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2001

Keywords

Crossrefs

Formula

a(n) = A063260(n+2, 9) = (n+1)*(n+2)*(n+3)*(n+4)*(n^5+44*n^4+791*n^3+7384*n^2+37140*n+30240)/9!.
G.f.: (2+5*x-20*x^2+25*x^3-14*x^4+3*x^5)/(1-x)^10; the numerator polynomial is N6(8, x) from row n=8 of array A063261.
a(n) = 2*C(n+2,2) + 19*C(n+2,3) + 52*C(n+2,4) + 70*C(n+2,5) + 56*C(n+2,6) + 28*C(n+2,7) + 8*C(n+2,8) + C(n+2,9) (see comment in A213888). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012

A213744 Triangle of numbers C^(5)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 5 appearances allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 456, 1, 7, 28, 84, 210, 462, 917, 1667, 1, 8, 36, 120, 330, 792, 1708, 3368, 6147, 1, 9, 45, 165, 495, 1287, 2994, 6354, 12465, 22825, 1, 10
Offset: 0

Views

Author

Keywords

Comments

For k<=4, the triangle coincides with triangle A213743.
We have over columns of the triangle: T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A000332(n) for n>=7, T(n,5)=A000389(n) for n>=9, T(n,6)=A062989(n) for n>=5, T(n,7)=A063262 for n>=5, T(n,8)=A063263 for n>=6, T(n,9)=A063264 for n>=7.

Examples

			Triangle begins
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1.....2.....3
.3..|..1.....3.....6....10
.4..|..1.....4....10....20....35
.5..|..1.....5....15....35....70....126
.6..|..1.....6....21....56...126....252...456
.7..|..1.....7....28....84...210....462...917....1667
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[6] (* Peter J. C. Moses, Apr 16 2013 *)

Formula

C^(5)(n,k)=sum{r=0,...,floor(k/6)}(-1)^r*C(n,r)*C(n-6*r+k-1, n-1)

A062990 Eighth column (r=7) of FS(5) staircase array A062985.

Original entry on oeis.org

5, 30, 110, 315, 771, 1688, 3396, 6390, 11385, 19382, 31746, 50297, 77415, 116160, 170408, 245004, 345933, 480510, 657590, 887799, 1183787, 1560504, 2035500, 2629250, 3365505, 4271670, 5379210, 6724085, 8347215
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this sequence is called {(n+2) over 7}_{4}, n >= 0.

Crossrefs

Partial sums of A062989.

Programs

  • Maple
    [seq((binomial(n+7,n)-binomial(n+2,n)),n=1..29)]; # Zerinvary Lajos, Jun 23 2006
  • Mathematica
    Table[Binomial[n+7,n]-Binomial[n+2,n],{n,30}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{5,30,110,315,771,1688,3396,6390},30] (* Harvey P. Dale, Jun 09 2016 *)
  • PARI
    { for (n=0, 1000, m=n + 1; a=binomial(m + 7, m) - binomial(m + 2, m); write("b062990.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 15 2009

Formula

a(n) = A062985(n+2, 7) = (n+1)*(n+2)*(n+3)*(n^4 + 29*n^3 + 326*n^2 + 1744*n + 4200)/7!.
G.f.: N(5;1, x)/(1-x)^8 with N(5;1, x)= 5-10*x+10*x^2-5*x^3+x^4 = (1-(1-x)^5)/x polynomial of second row of A062986.
a(n) = binomial(n+7,n) - binomial(n+2,n). - Zerinvary Lajos, Jun 23 2006

Extensions

More terms from Zerinvary Lajos, Jun 23 2006
Showing 1-6 of 6 results.