cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064145 a(n) = tau(n!-1) or number of divisors of n!-1.

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 4, 6, 4, 16, 2, 4, 2, 24, 4, 8, 8, 8, 4, 16, 8, 4, 4, 8, 4, 4, 16, 32, 2, 8, 2, 2, 4, 8, 4, 32, 2, 16, 4, 16, 16, 128, 16, 32, 32, 4, 16, 8, 4, 32, 32, 16, 64, 64, 32, 64, 32, 4, 8, 16, 16, 32, 16, 64, 16, 128, 4, 64, 32, 32, 8, 16, 32, 128, 8
Offset: 2

Views

Author

Vladeta Jovovic, Sep 11 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ Print[ DivisorSigma[0, n! - 1]], {n, 2, 40} ]
    DivisorSigma[0,Range[2,80]!-1] (* Harvey P. Dale, Aug 17 2024 *)
  • PARI
    { f=1; for (n=2, 100, f*=n; if (n>1, a=numdiv(f - 1), a=0); write("b064145.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 09 2009

Extensions

More terms from Robert G. Wilson v, Oct 04 2001
a(51)-a(76) from Harry J. Smith, Sep 09 2009
Ambiguous term a(1) removed by Max Alekseyev, May 06 2022

A104369 Number of divisors of A104365(n) = A104350(n) + 1.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 4, 16, 16, 4, 2, 16, 4, 4, 8, 4, 2, 16, 8, 8, 2, 8, 16, 32, 16, 32, 16, 8, 8, 16, 128, 4, 32, 16, 16, 4, 16, 8, 16, 4, 8, 128, 16, 4, 16, 4, 8, 4, 16, 8, 16, 32, 8, 16, 16, 4, 2, 4, 16, 64, 16, 8, 8, 16, 16, 64, 64, 64, 32, 8, 64, 16, 32, 8, 8, 32, 8, 16, 8, 16, 128, 64, 16, 8, 16, 4, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 76] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000005(A104365(n)).

Extensions

a(51)-a(76) from Amiram Eldar, Feb 12 2020
Terms a(77) onward from Max Alekseyev, Oct 03 2022

A344859 a(n) is the number of divisors of n^n + 1.

Original entry on oeis.org

2, 2, 2, 6, 2, 8, 8, 16, 8, 16, 8, 96, 16, 32, 48, 160, 4, 12, 288, 48, 8, 64, 16, 512, 64, 128, 32, 3072, 64, 128, 1024, 384, 16, 2048, 64, 18432, 32, 128, 192, 512, 768, 64, 1024, 384, 256, 16384, 256, 2560, 64, 192, 1024, 3072, 32, 512, 16384, 4096, 128, 8192, 8192, 768, 4096, 256, 128, 1376256, 16
Offset: 0

Views

Author

Seiichi Manyama, May 31 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[n_] := DivisorSigma[0, n^n + 1]; Array[a, 45, 0] (* Amiram Eldar, May 31 2021 *)
  • PARI
    a(n) = numdiv(n^n+1);

Formula

a(n) = A000005(A014566(n)).

A366758 a(n) is the sum of the divisors of n!+1.

Original entry on oeis.org

3, 3, 4, 8, 31, 133, 832, 5113, 41044, 388800, 3958704, 39916802, 518682390, 6302045232, 90968651712, 1332614649600, 22844265373440, 356226551466344, 7504470340300800, 123358411682195904, 2432902126073962432, 52279222588118377280, 1175121515279802150144
Offset: 0

Views

Author

Sean A. Irvine, Oct 20 2023

Keywords

Examples

			a(5) = 133 because the divisors of 5!+1 are {1, 11, 121}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](n!+1):
    seq(a(n), n=0..30);
  • Mathematica
    DivisorSigma[1,Range[0,25]!+1] (* Paolo Xausa, Oct 21 2023 *)
  • Python
    from math import factorial
    from sympy import divisor_sigma
    def A366758(n): return divisor_sigma(factorial(n)+1) # Chai Wah Wu, Oct 20 2023

Formula

a(n) = sigma(n!+1) = A000203(A038507(n)).
Showing 1-4 of 4 results.