cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A104361 Number of divisors of A104357(n) = A104350(n) - 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 4, 4, 4, 2, 4, 8, 8, 2, 8, 8, 8, 2, 4, 16, 16, 4, 4, 32, 16, 4, 8, 4, 8, 2, 8, 16, 8, 32, 8, 16, 16, 32, 2, 8, 16, 4, 4, 4, 8, 2, 4, 8, 4, 8, 2, 16, 2, 8, 16, 64, 16, 16, 4, 64, 2, 32, 16, 16, 2, 4, 32, 128, 16, 32, 8, 16, 16, 32, 16, 32, 4, 16, 16, 32, 8, 8, 8, 4, 32, 4, 32, 16, 128, 4, 32, 8, 4
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, -1 + Product[FactorInteger[k][[-1, 1]], {k, 1, n}]]; Array[a, 50, 2] (* Amiram Eldar, Feb 12 2020 *)

Formula

a(n) = A000005(A104357(n)).

Extensions

a(51)-a(74) from Amiram Eldar, Feb 12 2020
Terms a(75) onward from Max Alekseyev, Oct 03 2022

A064144 a(n) is the number of divisors of n!+1.

Original entry on oeis.org

2, 2, 2, 3, 3, 4, 3, 4, 8, 4, 2, 6, 4, 4, 8, 32, 8, 64, 4, 4, 8, 8, 12, 4, 4, 4, 2, 4, 8, 32, 16, 16, 32, 4, 32, 64, 2, 4, 16, 128, 2, 8, 16, 8, 8, 8, 16, 4, 32, 32, 64, 16, 16, 4, 4, 16, 8, 16, 4, 16, 16, 8, 32, 8
Offset: 1

Views

Author

Vladeta Jovovic, Sep 11 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ Print[ DivisorSigma[0, n! + 1]], {n, 1, 40} ]
  • PARI
    a(n) = numdiv(n! + 1); \\ Harry J. Smith, Sep 09 2009
    
  • Python
    from math import factorial
    from sympy import divisor_count
    def A064144(n): return divisor_count(factorial(n)+1) # Chai Wah Wu, Oct 20 2023

Formula

a(n) = tau(n!+1).

Extensions

More terms from Robert G. Wilson v, Oct 04 2001
a(42)-a(64) from Harry J. Smith, Sep 09 2009
Edited by Jon E. Schoenfield, Jun 21 2018

A366757 a(n) is the sum of the divisors of n!-1.

Original entry on oeis.org

1, 6, 24, 144, 720, 5040, 42096, 399000, 3753960, 47500992, 479001600, 6230615736, 87178291200, 1457696910960, 20929670124480, 379536693283440, 6510917252872320, 121831439598033840, 2432921507427445440, 53921727651043042560, 1134312679767378217920
Offset: 2

Views

Author

Sean A. Irvine, Oct 20 2023

Keywords

Examples

			a(5) = 144 because the divisors of 5!-1 are {1, 7, 17, 119}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](n!-1):
    seq(a(n), n=2..30);
  • Mathematica
    DivisorSigma[1,Range[2,25]!-1] (* Paolo Xausa, Oct 21 2023 *)
  • Python
    from math import factorial
    from sympy import divisor_sigma
    def A366757(n): return divisor_sigma(factorial(n)-1) # Chai Wah Wu, Oct 20 2023

Formula

a(n) = sigma(n!-1) = A000203(A033312(n)).

A366809 The sum of the divisors of prime(n)#-1 where p# is the product of all the primes from 2 to p inclusive.

Original entry on oeis.org

1, 6, 30, 240, 2310, 30030, 518940, 9943560, 230876448, 6551588160, 200561595684, 7471933410000, 304250263527210, 13082853940673340, 618109122639794688, 32589631537463089128, 1922760350251477679196, 117386696543681561301312, 7906535060701218163040640
Offset: 1

Views

Author

Sean A. Irvine, Oct 23 2023

Keywords

Examples

			a(4)=240 because the divisors of 7#-1 = 209 are {1, 11, 19, 209}.
		

Crossrefs

Programs

  • Maple
    seq(numtheory[sigma](mul(ithprime(k), k=1..n)-1), n=1..30);

Formula

a(n) = sigma(prime(n)#-1) = A000230(A057588(n)).

A366811 The number of divisors of prime(n)#+1 where p# is the product of all the primes from 2 to p inclusive.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 4, 8, 4, 4, 8, 2, 8, 8, 4, 8, 16, 16, 4, 4, 16, 4, 8, 4, 16, 8, 4, 16, 16, 8, 8, 32, 8, 64, 4, 8, 4, 32, 16, 16, 4, 64, 8, 16, 8, 32, 64, 128, 4, 64, 8, 32, 8, 16, 4, 64, 32, 16, 32, 8, 32, 32, 32, 8, 8, 32, 32, 64, 8, 16, 16, 128, 32, 8, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 23 2023

Keywords

Examples

			a(6) = 4 because the divisors of 13#+1 = 30031 are {1, 59, 509, 30031}.
		

Crossrefs

Programs

  • Maple
    seq(numtheory[tau](mul(ithprime(k), k=1..n)+1), n=0..30);
  • Mathematica
    Map[DivisorSigma[0, #] &, 1 + FoldList[Times, 1, Prime@ Range@ 19] ] (* Michael De Vlieger, Oct 25 2023 *)

Formula

a(n) = sigma0(prime(n)#+1) = A000005(A006862(n)).

A331547 Numbers k such that k and k! - 1 have the same number of divisors.

Original entry on oeis.org

3, 7, 8, 10, 26, 27, 34, 85, 93, 104, 143, 152
Offset: 1

Views

Author

Matthew Niemiro, Jan 20 2020

Keywords

Comments

The sequence also includes: 143, 152, 186, 230, 379, 381, 543, 573, 602. - Daniel Suteu, Jan 21 2020
The sequence also includes 2881. Even though the complete factorization of 136!-1 is not known, 136 is not a term, since 136!-1 is known to be the product of 2 distinct primes and a composite number, so it has at least 4 prime factors and 3 distinct prime factors, thus the number of divisors >= 12, whereas 136 has 8 divisors. - Chai Wah Wu, Feb 26 2020
Similar reasoning (considering only small prime factors of k! - 1) shows that the next terms (> a(12) = 152) can only be within the set {154, 160, 162, 164, 176, 180, 182, 186, 187, 188, 192, 195, 196, 198, 204, ...}. - M. F. Hasler, Feb 26 2020

Crossrefs

Supersequence of A103317.

Programs

  • Mathematica
    Select[Range[50], DivisorSigma[0, #] - DivisorSigma[0, Factorial[#] - 1] == 0 &]
  • PARI
    isok(k) = k>1 && numdiv(k)==numdiv(k!-1); \\ Jinyuan Wang, Jan 20 2020
    
  • PARI
    {is(n)=my(f); n>2&& numdiv(n)>=numdiv(f=factor(n!-1,0))&& if( ispseudoprime(vecmax(f[,1])), numdiv(n)==numdiv(f), numdiv(n)<2*numdiv(f), 0, numdiv(n)==numdiv(n!-1))} \\ Avoids complete factorization if possible. - M. F. Hasler, Feb 26 2020

Formula

A331547 = { n > 1 | A000005(n) = A064145(n) }. - M. F. Hasler, Feb 26 2020

Extensions

a(8)-a(9) from Jinyuan Wang, Jan 20 2020
a(10) from Amiram Eldar, Jan 20 2020
a(11)-a(12) from Chai Wah Wu, Feb 26 2020

A366808 The number of divisors of prime(n)#-1 where p# is the product of all the primes from 2 to p inclusive.

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 4, 8, 8, 4, 4, 16, 2, 4, 8, 8, 4, 8, 8, 4, 4, 16, 8, 2, 4, 4, 16, 16, 16, 8, 8, 8, 8, 8, 8, 16, 16, 16, 32, 8, 32, 16, 32, 16, 16, 16, 16, 4, 8, 8, 4, 16, 8, 16, 4, 16, 16, 128, 16, 8, 8, 16, 16, 8, 8, 2, 8, 2, 16, 8, 32, 32, 16, 16, 64, 32
Offset: 1

Views

Author

Sean A. Irvine, Oct 23 2023

Keywords

Examples

			a(4)=4 because the divisors of 7#-1 = 209 are {1, 11, 19, 209}.
		

Crossrefs

Programs

  • Maple
    seq(numtheory[tau](mul(ithprime(k), k=1..n)-1), n=1..30);
  • Mathematica
    Map[DivisorSigma[0, #] &, -1 + FoldList[Times, Prime@ Range@ 30] ] (* Michael De Vlieger, Oct 25 2023 *)

Formula

a(n) = sigma0(prime(n)#-1) = A000005(A057588(n)).
Showing 1-7 of 7 results.