cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A327942 Numbers k such that both k and k+1 are nonunitary abundant numbers (A064597).

Original entry on oeis.org

165375, 893024, 1047375, 1576575, 2282175, 2304224, 2858624, 3614624, 4068224, 4096575, 4597424, 4975424, 6591375, 7574175, 8555624, 9511424, 10446975, 10749375, 10872224, 11477024, 12535424, 13773375, 13946624, 14277375, 15926624, 16041375, 16505775, 16769024
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2019

Keywords

Examples

			165375 is in the sequence since both 165375 and 165376 are nonunitary abundant: nusigma(165375) = 179280 > 165375, and nusigma(165376) = 183600 > 165376 (nusigma is the sum of nonunitary divisors, A048146).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); nuabQ[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (1 + Power @@@ FactorInteger[n]) > n; s = {}; q1 = False; Do[q2 = nuabQ[n]; If[q1 && q2, AppendTo[s, n - 1]]; q1 = q2, {n, 2, 10^7}]; s

A064591 Nonunitary perfect numbers: k is the sum of its nonunitary divisors; i.e., k = sigma(k) - usigma(k).

Original entry on oeis.org

24, 112, 1984, 32512, 134201344, 34359476224, 549754765312
Offset: 1

Views

Author

Dean Hickerson, Sep 25 2001

Keywords

Comments

There are no other terms up to 1.2*10^14.
If P (A000396) is an even perfect number, then 4*P is in the sequence. Are there any others?
If there are no terms of another form, the sequence goes on with 9223372032559808512 = 2^32 * A000668(8), 10633823966279326978618770463815368704 = 2^62 * A000668(9), 766247770432944429179173512337214552523989286192676864 = 2^90 * A000668(10), ... - Michel Lagneau, Jan 21 2015
Conjecture: let s0 be the sum of the inverses of the even divisors of a number n and s1 the sum of the inverses of the odd divisors of n; then n is in the sequence iff 2*s0-s1 = 1. - Michel Lagneau, Jan 21 2015
Ligh & Wall proved that 2^(p+1)*(2^p-1) is a term if p and 2^p-1 are primes, and that all the nonunitary perfect numbers below 10^6 are of this form. - Amiram Eldar, Sep 27 2018
If k is in the sequence and k = 2^m*p^a then k is of the form 4*P for an even perfect P. See the link to MathOverflow. - Joshua Zelinsky, Mar 07 2024

Examples

			The sum of the nonunitary divisors of 24 is 2 + 4 + 6 + 12 = 24.
		

Crossrefs

Programs

  • Mathematica
    nusigma[ n_ ] := DivisorSigma[ 1, n ]-Times@@(1+Power@@#&/@FactorInteger[ n ]); For[ n=1, True, n++, If[ nusigma[ n ]==n, Print[ n ] ] ]
    Do[s0=0;s1=0;Do[d=Divisors[n][[i]];If[Mod[d,2]==0,s0=s0+1/d,s1=s1+1/d],{i,1,Length[Divisors[n]]}];If[2*s0-s1==1,Print[n]],{n,2,10^9,2}] (* Michel Lagneau, Jan 21 2015 *)

A348274 Noninfinitary abundant numbers: numbers k such that A348271(k) > k.

Original entry on oeis.org

36, 48, 80, 144, 180, 240, 252, 288, 300, 324, 336, 396, 400, 432, 468, 528, 560, 576, 588, 612, 624, 684, 720, 768, 784, 816, 828, 880, 900, 912, 960, 1008, 1040, 1044, 1104, 1116, 1200, 1232, 1260, 1280, 1296, 1332, 1360, 1392, 1440, 1456, 1476, 1488, 1520, 1548
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Comments

The first odd term is a(3577) = 99225.
The number of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 3, 31, 360, 3605, 36160, 360840, 3618980, 36144059, ... Apparently this sequence has an asymptotic density 0.0361...

Examples

			36 is a term since A348271(36) = 41 > 36.
		

Crossrefs

Subsequence of A005101.
Similar sequences: A034683, A064597, A129575, A129656, A292982.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; Select[Range[1500], s[#] > # &]

A348604 Nonexponential abundant numbers: numbers k such that A160135(k) > k.

Original entry on oeis.org

24, 30, 42, 48, 54, 60, 66, 70, 72, 78, 84, 90, 96, 102, 114, 120, 126, 132, 138, 150, 156, 160, 162, 168, 174, 180, 186, 192, 198, 210, 216, 222, 224, 240, 246, 258, 264, 270, 280, 282, 288, 294, 300, 312, 318, 320, 330, 336, 352, 354, 360, 366, 378, 384, 390
Offset: 1

Views

Author

Amiram Eldar, Oct 25 2021

Keywords

Comments

The smallest odd term is a(1357) = 8505.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 13, 148, 1595, 15688, 158068, 1578957, 15762209, 157745113, 1577808429, ... Apparently this sequence has an asymptotic density 0.157...

Examples

			24 is a term since A160135(24) = 30 > 24.
		

Crossrefs

Subsequence of A005101.
Similar sequences: A034683, A064597, A129575, A129656, A292982, A348274.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; q[n_] := DivisorSigma[1, n] - esigma[n] > n; Select[Range[400], q]

A094889 Odd nonunitary abundant numbers.

Original entry on oeis.org

33075, 99225, 165375, 231525, 259875, 297675, 363825, 429975, 467775, 496125, 552825, 562275, 571725, 606375, 628425, 675675, 694575, 716625, 760725, 779625, 798525, 826875, 848925, 883575, 893025, 921375, 937125, 959175, 1003275
Offset: 1

Views

Author

Lekraj Beedassy, Jun 16 2004

Keywords

Crossrefs

Cf. A064597.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); nuabQ[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (1 + Power @@@ FactorInteger[n]) > n; Select[Range[3, 10^6, 2], nuabQ] (* Amiram Eldar, May 12 2019 *)
  • PARI
    { usigma(n)=local(s=1,fac,i); fac=factor(n); for(i=1,matsize(fac)[1], s=s*(1+fac[i,1]^fac[i,2])); return(s); } nusigma(n)=sigma(n)-usigma(n); forstep(n=1,2^24,2,if(nusigma(n)>n,print1(n",")))

Extensions

Corrected and extended by Jason Earls, Jun 18 2004

A380929 Numbers k such that A380845(k) > 2*k.

Original entry on oeis.org

36, 72, 84, 140, 144, 168, 180, 264, 270, 280, 288, 300, 336, 360, 372, 392, 450, 520, 528, 532, 540, 558, 560, 576, 594, 600, 612, 620, 672, 720, 744, 756, 780, 784, 840, 900, 930, 1036, 1040, 1050, 1056, 1064, 1068, 1080, 1092, 1116, 1120, 1134, 1152, 1170, 1180, 1188, 1200
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Analogous to abundant numbers (A005101) with A380845 instead of A000203.

Examples

			36 is a term since A380845(36) = 84 > 2 * 36 = 72.
		

Crossrefs

Subsequence of A005101.
Subsequences: A380847, A380848, A380930, A380931.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k]; Select[Range[1200], q]
  • PARI
    isok(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;}

A327948 Nonunitary weird numbers: numbers that are nonunitary abundant but not nonunitary pseudoperfect.

Original entry on oeis.org

280, 3344, 16120, 23320, 28768, 31648, 37088, 41720, 42280, 43168, 43960, 45640, 46760, 48440, 50120, 50680, 53480, 54040, 55160, 55720, 59080, 62440, 63560, 64120, 65240, 66920, 67480, 69088, 70280, 71960, 73640, 75320, 75880, 77560, 78680, 79240, 82040
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2019

Keywords

Crossrefs

The nonunitary version of A006037.

Programs

  • Mathematica
    nudiv[n_] := Module[{d = Divisors[n]}, Select[d, GCD[#, n/#] > 1 &]]; s = {}; Do[d = nudiv[n]; If[Total[d] <= n, Continue[]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c == 0, AppendTo[s, n]], {n, 1, 10^5}]; s

A335142 Nonunitary Zumkeller numbers: numbers whose set of nonunitary divisors is nonempty and can be partitioned into two disjoint sets of equal sum.

Original entry on oeis.org

24, 48, 54, 80, 96, 112, 120, 150, 160, 168, 180, 192, 216, 224, 240, 252, 264, 270, 280, 294, 312, 320, 336, 352, 360, 378, 384, 396, 408, 416, 432, 448, 456, 468, 480, 486, 504, 528, 540, 552, 560, 594, 600, 612, 624, 630, 640, 672, 684, 696, 702, 704, 720, 726
Offset: 1

Views

Author

Amiram Eldar, May 25 2020

Keywords

Comments

Apparently, most of the terms are nonunitary abundant (A064597). Term that are nonunitary deficient (A064598) are 54, 150, 270, 294, 378, ...

Examples

			24 is a term since its set of nonunitary divisors, {2, 4, 6, 12}, can be partitioned into the two disjoint sets, {2, 4, 6} and {12}, whose sum is equal: 2 + 4 + 6 = 12.
		

Crossrefs

Programs

  • Mathematica
    nuzQ[n_] := Module[{d = Select[Divisors[n], GCD[#, n/#] > 1 &], sum, x}, sum = Plus @@ d; sum > 0 && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[1000], nuzQ]

A063846 Numbers k such that sigma(k) - usigma(k) > 2k.

Original entry on oeis.org

1440, 1800, 2160, 2880, 3024, 3600, 4320, 5040, 5400, 5760, 6048, 6480, 7056, 7200, 7560, 7920, 8064, 8640, 9000, 9072, 9360, 9504, 9720, 10080, 10584, 10800, 11088, 11520, 11880, 12096, 12240, 12600, 12960, 13680, 14040, 14112, 14400, 15120
Offset: 1

Views

Author

Jason Earls, Aug 25 2001

Keywords

Crossrefs

Programs

  • PARI
    u(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d));
    j=[]; for(n=1,20000, if(sigma(n)-u(n)>2*n,j=concat(j,n))); j
    
  • PARI
    u(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))
    { n=0; for (m=1, 10^9, if(sigma(m) - u(m) > 2*m, write("b063846.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 01 2009

A064598 Nonunitary deficient numbers: the sum of the nonunitary divisors of n is less than n; i.e., sigma(n) - usigma(n) < n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Dean Hickerson, Sep 25 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nusigma[ n_ ] := DivisorSigma[ 1, n ]-Times@@(1+Power@@#&/@FactorInteger[ n ]); For[ n=1, True, n++, If[ nusigma[ n ]
    				
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) } { n=0; for (m=1, 10^9, if (sigma(m) - usigma(m) < m, write("b064598.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 19 2009
Showing 1-10 of 23 results. Next