A327942 Numbers k such that both k and k+1 are nonunitary abundant numbers (A064597).
165375, 893024, 1047375, 1576575, 2282175, 2304224, 2858624, 3614624, 4068224, 4096575, 4597424, 4975424, 6591375, 7574175, 8555624, 9511424, 10446975, 10749375, 10872224, 11477024, 12535424, 13773375, 13946624, 14277375, 15926624, 16041375, 16505775, 16769024
Offset: 1
Keywords
Examples
165375 is in the sequence since both 165375 and 165376 are nonunitary abundant: nusigma(165375) = 179280 > 165375, and nusigma(165376) = 183600 > 165376 (nusigma is the sum of nonunitary divisors, A048146).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); nuabQ[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (1 + Power @@@ FactorInteger[n]) > n; s = {}; q1 = False; Do[q2 = nuabQ[n]; If[q1 && q2, AppendTo[s, n - 1]]; q1 = q2, {n, 2, 10^7}]; s
Comments