cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A064756 a(n) = n*10^n - 1.

Original entry on oeis.org

9, 199, 2999, 39999, 499999, 5999999, 69999999, 799999999, 8999999999, 99999999999, 1099999999999, 11999999999999, 129999999999999, 1399999999999999, 14999999999999999, 159999999999999999, 1699999999999999999, 17999999999999999999, 189999999999999999999, 1999999999999999999999
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

Cf. for a(n) = n*k^n - 1: -A000012 (k=0), A001477 (k=1), A003261 (k=2), A060352 (k=3), A060416 (k=4), A064751 (k=5), A064752 (k=6), A064753 (k=7), A064754 (k=8), A064755 (k=9), this sequence (k=10), A064757 (k=11), A064758 (k=12).

Programs

  • Magma
    [ n*10^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
  • Maple
    k:= 10; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
  • Mathematica
    Array[# 10^# - 1 &, 18] (* Michael De Vlieger, Jan 14 2020 *)

Formula

From Elmo R. Oliveira, Sep 07 2024: (Start)
G.f.: x*(100*x^2 - 10*x - 9)/((x - 1)*(10*x - 1)^2).
E.g.f.: 1 + exp(x)*(10*x*exp(9*x) - 1).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n > 3.
a(n) = A126431(n) - 1 = A064748(n) - 2. (End)

A064749 a(n) = n*11^n + 1.

Original entry on oeis.org

1, 12, 243, 3994, 58565, 805256, 10629367, 136410198, 1714871049, 21221529220, 259374246011, 3138428376722, 37661140520653, 448795257871104, 5316497670165375, 62658722541234766, 735195677817154577, 8592599484487994108, 100078511642860166659, 1162022718519876379530
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Crossrefs

For a(n)=n*k^n+1: A000012 (k=0), A000027(n+1) (k=1), A002064 (k=2), A050914 (k=3), A050915 (k=4), A050916 (k=5), A050917 (k=6), A050919 (k=7), A064746 (k=8), A064747 (k=9), A064748 (k=10), this sequence (k=11), A064750 (k=12).
Cf. A064757.

Programs

  • Magma
    [n*11^n+1: n in [0..20]]; // Vincenzo Librandi, Sep 16 2011
  • Maple
    k:= 11; f:= gfun:-rectoproc({-1 - (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(0) = 1, a(1) = k+1}, a(n), remember): map(f, [$0..20]); # Georg Fischer, Feb 19 2021

Formula

a(n) = A064757(n) + 2 for n>=1. - Georg Fischer, Feb 19 2021
G.f.: -(110*x^2-11*x+1)/((x-1)*(11*x-1)^2). - Alois P. Heinz, Feb 19 2021
From Elmo R. Oliveira, May 03 2025: (Start)
E.g.f.: exp(x)*(1 + 11*x*exp(10*x)).
a(n) = 23*a(n-1) - 143*a(n-2) + 121*a(n-3). (End)

A216376 Semiprimes of the form n*10^n + 1.

Original entry on oeis.org

201, 500001, 130000000000001, 280000000000000000000000000001, 340000000000000000000000000000000001, 36000000000000000000000000000000000001, 39000000000000000000000000000000000000001
Offset: 1

Views

Author

Jonathan Vos Post, Sep 06 2012

Keywords

Comments

This is to A216347 as semiprimes A001358 are to primes A000040. The corresponding n are 2, 5, 13, 28, 34, 36, 39, ... (A216378).
a(14) >= 414*10^414 + 1. - Hugo Pfoertner, Jul 28 2019

Examples

			a(1) = 2 * 10^2 + 1 = 201 = 3 * 67.
a(2) = 5 * 10^5 + 1 = 500001 = 3 * 166667.
a(3) = 13*10^13 + 1 = 130000000000001 = 6529 * 19911165569.
a(4) = 28 * 10^28 + 1 = 29 * 9655172413793103448275862069.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:= func; [s: n in [1..40] | IsSemiprime(s) where s is n*10^n + 1]; // Vincenzo Librandi, Sep 22 2012
  • Mathematica
    SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; Select[Table[n*10^n + 1, {n, 50}], SemiPrimeQ[#] &] (* T. D. Noe, Sep 07 2012 *)
    Select[Table[n*10^n + 1, {n, 50}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)

Formula

semiprimes in A064748.

A216378 Numbers m such that m*10^m + 1 is a semiprime.

Original entry on oeis.org

2, 5, 13, 28, 34, 36, 39, 111, 117, 123, 181, 184, 187
Offset: 1

Views

Author

Jonathan Vos Post, Sep 06 2012

Keywords

Comments

This is to A007647 as semiprimes A001358 is to primes A000040. The corresponding semiprimes are A216376 = {201, 500001, 130000000000001, 280000000000000000000000000001, ...}.
a(14) >= 414. - Daniel Suteu, Jul 09 2019

Examples

			a(1) = 2 because 2 * 10^2 + 1 = 201 = 3 * 67.
a(2) = 5 because  5 * 10^5 + 1 = 500001 = 3 * 166667.
a(3) = 13 because 13*10^13 + 1 = 130000000000001 = 6529 * 19911165569.
a(4) = 28 because 28 * 10^28 + 1 = 29 * 9655172413793103448275862069.
		

Crossrefs

Cf. similar sequences listed in A242203.

Programs

  • Magma
    IsSemiprime:=func; [n: n in [1..70] | IsSemiprime(s) where s is n*10^n+1]; // Vincenzo Librandi, May 10 2014
  • Mathematica
    Select[Range[40], PrimeOmega[# 10^# + 1] == 2 &] (* Alonso del Arte, Sep 08 2012 *)

Extensions

a(8)-a(13) from Daniel Suteu, Jul 09 2019

A175188 Composite numbers of the form k*10^k + 1.

Original entry on oeis.org

201, 40001, 500001, 6000001, 70000001, 800000001, 100000000001, 1100000000001, 12000000000001, 130000000000001, 1400000000000001, 15000000000000001, 160000000000000001, 1700000000000000001, 18000000000000000001, 190000000000000000001, 2000000000000000000001
Offset: 1

Author

Michel Lagneau, Mar 01 2010

Keywords

Examples

			For k=2, 2*10^2 + 1 = 201 = 3*67.
For k=4, 4*10^4 + 1 = 40001 = 13*17*181.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Intersection of A002808 and A064748.
Subsequence of A005381.
Cf. A216347.

Programs

  • Maple
    with(numtheory):for k from 1 to 100 do: n:=k*10^k +1:if type(n,prime) = false then print(n):else fi:od:
  • Mathematica
    Select[Table[k*10^k+1, {k, 1, 20}], CompositeQ] (* Amiram Eldar, Aug 14 2023 *)

Extensions

a(16)-a(17) added and name corrected by Amiram Eldar, Aug 14 2023
Showing 1-5 of 5 results.