cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A317743 Valleys in A064800: terms which are smaller than their neighbors.

Original entry on oeis.org

14, 18, 20, 27, 30, 32, 35, 38, 42, 44, 51, 54, 57, 59, 62, 67, 68, 72, 74, 80, 87, 90, 93, 98, 102, 104, 110, 114, 123, 128, 131, 132, 135, 138, 140, 143, 147, 150, 152, 158, 163, 164, 171, 174, 179, 182, 187, 192, 194, 198, 200
Offset: 1

Views

Author

Zak Seidov, Aug 05 2018

Keywords

Comments

From Zak Seidov, Sep 21 2018: (Start)
First second-order valley is a(514) = 516
with {521, 517, 516, 517, 520}.
First third-order valley is a(k=265827) = 265829
with {265833, 265831, 265830, 265829, 265831, 265832, 265834}.
Are there minima of higher order? (End)

Examples

			a(1) = 14 is the first valley (local minimum) in A064800 as A064800(13) = 14 is less than A064800(12) = 15 and A064800(14) = 16.
		

Crossrefs

Programs

  • Mathematica
    Transpose[ Select[ Partition[(# + PrimeOmega[#]) & /@ Range[201], 3, 1], #[[1]] > #[[2]] < #[[3]] &]][[2]] (* Giovanni Resta, Aug 09 2018 *)
  • PARI
    lista(nn) = {my(v = vector(nn, n, n + bigomega(n))); for (n=2, nn, if ((v[n] < v[n-1]) && (v[n] < v[n+1]), print1(v[n], ", ")););} \\ Michel Marcus, Sep 07 2018

A319504 Indices of valleys (i.e. local minima) in A064800.

Original entry on oeis.org

13, 17, 19, 25, 29, 31, 33, 37, 41, 43, 49, 53, 55, 57, 61, 65, 67, 71, 73, 79, 85, 89, 91, 97, 101, 103, 109, 113, 121, 127, 129, 131, 133, 137, 139, 141, 145, 149, 151, 157, 161, 163, 169, 173, 177, 181, 185, 191, 193, 197, 199, 201, 205, 209, 211, 217, 221, 223, 229, 233, 235, 239, 241, 244, 249, 251, 253, 257, 265, 269, 271, 277, 281, 283, 289, 293, 295, 298
Offset: 1

Views

Author

Zak Seidov, Sep 20 2018

Keywords

Examples

			A064800(13) is the first minimum in A064800: A064800(12) = 15, A064800(13) = 14 and A064800(14) = 16 and hence a(1) = 13.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(v = vector(nn, n, n + bigomega(n))); for (n=2, nn, if ((v[n] < v[n-1]) && (v[n] < v[n+1]), print1(n, ", ")););} \\ Michel Marcus, Sep 21 2018

Extensions

More terms from Michel Marcus, Sep 21 2018

A069345 n minus the number of its prime-factors: a(n) = n - A001222(n).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 5, 7, 8, 10, 9, 12, 12, 13, 12, 16, 15, 18, 17, 19, 20, 22, 20, 23, 24, 24, 25, 28, 27, 30, 27, 31, 32, 33, 32, 36, 36, 37, 36, 40, 39, 42, 41, 42, 44, 46, 43, 47, 47, 49, 49, 52, 50, 53, 52, 55, 56, 58, 56, 60, 60, 60, 58, 63, 63, 66, 65
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Comments

Prime factors are counted with multiplicity. - Harvey P. Dale, Sep 20 2011

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else n-(&+[p[2]: p in Factorization(n)]): n in [1..100]]; // Vincenzo Librandi, Apr 09 2018
  • Mathematica
    Table[n-PrimeOmega[n],{n,70}] (* Harvey P. Dale, Sep 20 2011 *)
  • PARI
    a(n) = n - bigomega(n); \\ Michel Marcus, Apr 08 2018
    

A229109 a(n) = n plus the number of its distinct prime factors.

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 8, 9, 10, 12, 12, 14, 14, 16, 17, 17, 18, 20, 20, 22, 23, 24, 24, 26, 26, 28, 28, 30, 30, 33, 32, 33, 35, 36, 37, 38, 38, 40, 41, 42, 42, 45, 44, 46, 47, 48, 48, 50, 50, 52, 53, 54, 54, 56, 57, 58, 59, 60, 60, 63, 62, 64, 65, 65, 67, 69, 68
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 13 2013

Keywords

Examples

			a(40) = 42, since 40 has two distinct prime divisors (2 and 5), and so 40 + 2 = 42.
a(41) = 42 also, since 41 is prime and therefore 41 + 1 = 42.
a(42) = 45, since 42 has three distinct prime divisors (2, 3, 7), and so 42 + 3 = 45.
		

Crossrefs

Programs

  • Haskell
    a229109 n  = a001221 n + n
    
  • Mathematica
    Table[n + PrimeNu[n], {n, 80}] (* Harvey P. Dale, Jun 22 2015 *)
  • PARI
    a(n) = n + omega(n); \\ Michel Marcus, Jan 25 2022

Formula

a(n) = n + A001221(n).
a(n) = n + 1 if and only if n is prime or a power of a prime (that is, n > 1 is in A000961). - Alonso del Arte, Nov 17 2016

A069348 Primes of the form k + Omega(k), where Omega(k) is the number of prime factors of k, A001222(k).

Original entry on oeis.org

3, 11, 17, 23, 31, 37, 41, 47, 53, 59, 67, 71, 73, 79, 89, 97, 101, 113, 127, 131, 139, 151, 157, 163, 167, 173, 179, 181, 191, 193, 199, 211, 223, 229, 233, 239, 241, 251, 257, 269, 271, 277, 293, 307, 311, 313, 317, 331, 337
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Comments

The representation is ambiguous, see A069349.

Examples

			a(10) = 59 = A064800(57) = 57 + 2 (as 57 = 3*19).
		

Crossrefs

Programs

  • Mathematica
    Select[Table[n + PrimeOmega[n], {n, 1, 400}], PrimeQ] // Union (* Jean-François Alcover, Jun 08 2013 *)
  • PARI
    is(n)=for(k=1,log(n+.5)\log(2),if(bigomega(n-k)==k,return(isprime(n)))); 0 \\ Charles R Greathouse IV, Dec 10 2013

Extensions

Corrected by T. D. Noe, Nov 01 2006

A069357 Numbers of form 2^i*3^j + (i+j) with i, j >= 0.

Original entry on oeis.org

1, 3, 4, 6, 8, 11, 15, 20, 21, 28, 30, 37, 40, 53, 58, 70, 77, 85, 102, 113, 135, 150, 167, 199, 222, 248, 264, 295, 330, 392, 439, 492, 521, 584, 655, 735, 777, 872, 979, 1034, 1161, 1304, 1465, 1546, 1737, 1952, 2059, 2194, 2314, 2601, 2924, 3083, 3466, 3897
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Crossrefs

Formula

Distinct values of A003586(k) + A069352(k). [Corrected by Georg Fischer, Dec 11 2022, further clarification by Sean A. Irvine, Apr 28 2024]

Extensions

Missing a(1)=1 inserted and duplicate values removed by Sean A. Irvine, Apr 28 2024

A069349 Number of ways to represent primes as A069348(n)=k+A001222(k).

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Examples

			a(9)=3 as: A069348(9)=53=A064800(48)=A064800(50)=A064800(51)
53=2*2*2*2*3+5 and 53=2*5*5+3 and 51=3*17+2.
		

A337455 Numbers of the form m + bigomega(m) with m a positive integer.

Original entry on oeis.org

1, 3, 4, 6, 8, 11, 12, 14, 15, 16, 17, 18, 20, 21, 23, 24, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 44, 45, 47, 48, 51, 53, 54, 55, 57, 58, 59, 60, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 84, 85, 87, 88, 89, 90, 92, 93
Offset: 1

Views

Author

Nathan J. McDougall, Aug 27 2020

Keywords

Comments

If a(n) = m + A001222(m) then (a(n) - m) <= log(a(n))/log(2).
It appears that a(n)/n may converge to a constant around ~ 1.49.

Examples

			a(7) = 10 + A001222(10) = 10 + 2 = 12
		

Crossrefs

Cf. A001222 (bigomega), A064800, A358973.
Numbers of the form k^n+n where k is prime are subsequences: A006127 (k=2), A104743 (k=3), A104745 (k=5), A226199 (k=7), A226737 (k=11).
Subsequences include A008864, A101340, and A160649 (excluding the first term).

Programs

  • Mathematica
    m = 100; Select[Union @ Table[n + PrimeOmega[n], {n, 1, m}], # <= m &] (* Amiram Eldar, Aug 28 2020 *)
  • PARI
    upto(limit)=Set(select(t->t<=limit, apply(m->m+bigomega(m), [1..limit]))) \\ Andrew Howroyd, Aug 27 2020
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=1, lim\1-1, my(t=n[1]+bigomega(n)); if(t<=lim, listput(v, t))); Set(v) \\ Charles R Greathouse IV, Dec 07 2022

Formula

Kucheriaviy proves that a(n) << n log log n and conjectures that a(n) ≍ n, that is, these numbers have positive lower density. - Charles R Greathouse IV, Dec 07 2022
Showing 1-8 of 8 results.