cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A065463 Decimal expansion of Product_{p prime} (1 - 1/(p*(p+1))).

Original entry on oeis.org

7, 0, 4, 4, 4, 2, 2, 0, 0, 9, 9, 9, 1, 6, 5, 5, 9, 2, 7, 3, 6, 6, 0, 3, 3, 5, 0, 3, 2, 6, 6, 3, 7, 2, 1, 0, 1, 8, 8, 5, 8, 6, 4, 3, 1, 4, 1, 7, 0, 9, 8, 0, 4, 9, 4, 1, 4, 2, 2, 6, 8, 4, 2, 5, 9, 1, 0, 9, 7, 0, 5, 6, 6, 8, 2, 0, 0, 6, 7, 7, 8, 5, 3, 6, 8, 0, 8, 2, 4, 4, 1, 4, 5, 6, 9, 3, 1, 3
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

The density of A268335. - Vladimir Shevelev, Feb 01 2016
The probability that two numbers are coprime given that one of them is coprime to a randomly chosen third number. - Luke Palmer, Apr 27 2019

Examples

			0.7044422009991655927366033503...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1200; digits = 98; terms = 1200; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p*(p+1))) \\ Amiram Eldar, Mar 14 2021

Formula

From Amiram Eldar, Mar 05 2019: (Start)
Equals lim_{m->oo} (2/m^2)*Sum_{k=1..m} rad(k), where rad(k) = A007947(k) is the squarefree kernel of k (Cohen).
Equals lim_{m->oo} (2/m^2)*Sum_{k=1..m} uphi(k), where uphi(k) = A047994(k) is the unitary totient function (Sitaramachandrarao and Suryanarayana).
Equals lim_{m->oo} (1/log(m))*Sum_{k=1..m} 1/psi(k), where psi(k) = A001615(k) is the Dedekind psi function (Sita Ramaiah and Suryanarayana).
(End)
Equals A065473*A013661/A065480. - Luke Palmer, Apr 27 2019
Equals Sum_{k>=1} mu(k)/(k*sigma(k)), where mu is the Möbius function (A008683) and sigma(k) is the sum of divisors of k (A000203). - Amiram Eldar, Jan 14 2022
Equals 1/A065489. - R. J. Mathar, May 27 2025

A167338 Totally multiplicative sequence with a(p) = p*(p+1) = p^2+p for prime p.

Original entry on oeis.org

1, 6, 12, 36, 30, 72, 56, 216, 144, 180, 132, 432, 182, 336, 360, 1296, 306, 864, 380, 1080, 672, 792, 552, 2592, 900, 1092, 1728, 2016, 870, 2160, 992, 7776, 1584, 1836, 1680, 5184, 1406, 2280, 2184, 6480, 1722, 4032, 1892, 4752, 4320, 3312, 2256, 15552
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*n, {n, 1, 100}] (* G. C. Greubel, Jun 06 2016 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 1/(1/X/p - p - 1))/(1 - p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Apr 05 2023

Formula

Multiplicative with a(p^e) = (p*(p+1))^e.
If n = Product p(k)^e(k) then a(n) = Product (p(k)*(p(k)+1))^e(k).
a(n) = n * A003959(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + p - 1)) = A065489 = 1.419562880505485919317235861789735359166071586305122542698983695564330971... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/Pi^2) / Product_{p prime} (1 - 2/p^2 - 1/p^3) = 0.8913709085... . - Amiram Eldar, Dec 15 2022, c = A065488/3. - Vaclav Kotesovec, Apr 05 2023
Dirichlet g.f.: zeta(s-2) * Product_{p prime} (1 + 1/(p^(s-1) - p - 1)). - Vaclav Kotesovec, Apr 05 2023

A078077 Continued fraction expansion of Product_{p prime} (1 + 1/(p^2+p-1)).

Original entry on oeis.org

1, 2, 2, 1, 1, 1, 1, 4, 2, 1, 1, 3, 703, 2, 1, 1, 1, 3, 5, 1, 1, 4, 10, 2, 10, 2, 1, 2, 1, 4, 4, 11, 5, 1, 2, 1, 1, 30, 37, 2, 75, 1, 1, 8, 5, 1, 1, 7, 44, 280, 5, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 9, 94, 1, 127, 2, 2, 7, 3, 3, 3, 6, 2, 1, 705, 24, 2, 7, 2, 2, 1, 3, 7, 1, 1, 3, 40, 6, 1
Offset: 0

Views

Author

Benoit Cloitre, Dec 02 2002

Keywords

Crossrefs

Cf. A065489 (decimal expansion).

Programs

  • PARI
    contfrac(prodeulerrat(1 + 1/(p^2+p-1))) \\ Amiram Eldar, Mar 15 2021

Extensions

Offset changed by Andrew Howroyd, Jul 05 2024

A319597 Number of conjugacy classes for a non-abelian group of order p^3, where p is prime: a(n) = p^2 + p - 1 where p = prime(n).

Original entry on oeis.org

5, 11, 29, 55, 131, 181, 305, 379, 551, 869, 991, 1405, 1721, 1891, 2255, 2861, 3539, 3781, 4555, 5111, 5401, 6319, 6971, 8009, 9505, 10301, 10711, 11555, 11989, 12881, 16255, 17291, 18905, 19459, 22349, 22951, 24805, 26731, 28055, 30101, 32219, 32941, 36671
Offset: 1

Views

Author

Juan Lanfranco, Sep 23 2018

Keywords

Comments

For a non-abelian group of order p^3, we can use the class equation, p-group has nontrivial center result, group modulo center is cyclic implies group is abelian result, and the orbit-stabilizer theorem to give the number of conjugacy classes and number of elements in each conjugacy class.
The elements of A028387 with prime index.

Examples

			For p^3=2^3=8, the conjugacy classes of the Dihedral group = <r, s | r^4=1, s^2=1, srs=r^{-1}> are {1}, {r^2}, {r, r^3}, {s, sr^2}, {sr, sr^3}.
		

Crossrefs

Programs

  • Maple
    A028387:= n -> n^2+n-1:
    seq(A028387(ithprime(i)),i=1..50); # Robert Israel, Dec 23 2018
  • Mathematica
    f[n_]:=n^2 + n - 1 ; f[Prime[Range[43]]] (* Amiram Eldar, Nov 21 2018 *)
  • PARI
    a(n) = {my(p = prime(n)); p^2 + p - 1; } \\ Amiram Eldar, Nov 07 2022

Formula

From Amiram Eldar, Nov 07 2022: (Start)
a(n) = A028387(A000040(n)-1).
Product_{n>=1} (1 + 1/a(n)) = A065489.
Product_{n>=1} (1 - 1/a(n)) = A065480. (End)

A382664 Partial sums of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 6, 11, 17, 24, 32, 42, 53, 66, 80, 95, 112, 131, 152, 174, 197, 221, 247, 274, 303, 333, 364, 396, 429, 463, 498, 535, 573, 612, 652, 693, 735, 778, 824, 871, 922, 975, 1029, 1084, 1140, 1197, 1255, 1314, 1375, 1437, 1502, 1568, 1635, 1704, 1774, 1845, 1918
Offset: 1

Views

Author

Amiram Eldar, Apr 02 2025

Keywords

Crossrefs

Similar sequences: A173143, A174172, A358038, A362971.

Programs

  • Mathematica
    Accumulate[Select[Range[100], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]]
  • PARI
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;}
    list(lim) = {my(s = 0); for(k = 1, lim, if(isexpodd(k), s += k; print1(s, ", "))); }

Formula

a(n) = Sum_{k=1..n} A268335(k).
a(n) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p^2+p-1)) = 1.419562... (A065489).

A340565 Decimal expansion of the Product_{lesser twin primes p == 5 (mod 6)} 1/(1 - 1/p^2).

Original entry on oeis.org

1, 0, 5, 6, 9, 3, 2, 2, 9, 1, 4
Offset: 1

Views

Author

Artur Jasinski, Jan 11 2021

Keywords

Comments

Lesser twin primes A001359 (with the exception of the first prime, 3) are congruent to 5 mod 6: this constant is smaller than A340576.
By extrapolating method most probably the next two decimal digits are 1.056932291(46).
The known high-precision algorithms for Euler products are based on the Dirichlet L function and the Moebius inversion formula (see Mathematica procedure of Jean-François Alcover in A175646).
The constant is between 1.056932291453... and 1.056932291494. - R. J. Mathar, Feb 14 2025

Examples

			1.0569322914...
		

Crossrefs

Extensions

One more digit confirmed by a bracketing of partial products - R. J. Mathar, Feb 14 2025
Showing 1-6 of 6 results.