A066762 Duplicate of A066198.
2, 6, 8, 10, 22, 46, 58, 82, 106, 166, 178, 188, 226, 262, 285, 346, 358, 382, 466, 478
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(10) = 22 because there are 4 coprimes to 10 below 10, the divisors of 10 add up to 18, and 4 + 18 = 22.
[DivisorSigma(1,k)+EulerPhi(k):k in [1..65]]; // Marius A. Burtea, Feb 09 2020
with(numtheory); A065387:=n->phi(n) + sigma(n); seq(A065387(n), n=1..100); # Wesley Ivan Hurt, Apr 08 2014
Table[EulerPhi[n] + DivisorSigma[1,n], {n, 65}] (* Alonso del Arte *) a[n_] := SeriesCoefficient[Sum[(1+MoebiusMu[k])*x^k/(1-x^k)^2, {k, 1, n}], {x, 0, n}]; Array[a, 63] (* Jean-François Alcover, Sep 29 2017, after Ilya Gutkovskiy *)
a(n) = sigma(n) + eulerphi(n) \\ Harry J. Smith, Oct 17 2009
[sigma(n,1)+euler_phi(n) for n in range(1, 64)] # Stefano Spezia, Jul 20 2025
10 is in the sequence because phi(10) + sigma(10) = 4 + 18 = 22 and phi(11) + sigma(11) = 10 + 12 = 22 also. 12 is not in the sequence because phi(12) + sigma(12) = 4 + 28 = 32 but phi(13) + sigma(13) = 12 + 14 = 26.
Select[Range[2600],DivisorSigma[1,# ]+EulerPhi[ # ]==DivisorSigma[1,#+1]+EulerPhi[ #+1]&]
for(n=1,10^4, s=eulerphi(n)+sigma(n); if(s==eulerphi(n+1)+sigma(n+1), print1(n,", "))) /* Derek Orr, Aug 14 2014*/
de[n_]:=DivisorSigma[1,n]-EulerPhi[n];Do[If[de[n]==de[n+1],Print[n]],{n,50000000}] (* Firoozbakht *) Select[Range[10^6], (EulerPhi[# + 1] - EulerPhi[#]) == (DivisorSigma[1, # + 1] - DivisorSigma[1, #]) &] (* Alonso del Arte, Feb 08 2012 *)
Comments