cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A220136 Number of ways that a number n can be written as ddd...d where d is a digit in base b with 1 < b < n-1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 3, 0, 2, 1, 2, 0, 2, 2, 2, 1, 1, 1, 3, 0, 1, 1, 4, 0, 3, 1, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 2, 2, 1, 0, 5, 0, 2, 4, 2, 1, 3, 0, 2, 1, 3, 0, 4, 1, 1, 2, 2, 1, 3, 0, 5, 1, 1, 0, 5, 2, 2, 1
Offset: 1

Views

Author

T. D. Noe, Dec 26 2012

Keywords

Comments

When a(n) > 0, n is called Brazilian (A125134). The first number having exactly k representations is A284758(k) for k >= 0 or A066460(k+1) for k > 0. - Bernard Schott, Apr 08 2017

Crossrefs

Programs

  • Mathematica
    brazBases[n_] := Select[Range[2, n - 2], Length[Union[IntegerDigits[n, #]]] == 1 &]; Table[Length[brazBases[n]], {n, 100}]
  • PARI
    a(n) = sum(i=2, n-2, #vecsort(digits(n,i), , 8)==1) \\ David A. Corneth, Apr 08 2017

A284758 The least positive integer that has exactly n different representations as Brazilian number.

Original entry on oeis.org

1, 7, 15, 24, 40, 60, 144, 120, 180, 336, 420, 360, 900, 960, 720, 840, 1260, 1440, 2340, 1680, 2880, 3600, 8190, 2520, 9072, 9900, 6300, 6720, 20592, 5040, 10920, 7560, 31320, 98040, 25920, 10080, 21420, 177156, 74256, 15120, 28560, 20160
Offset: 0

Views

Author

Bernard Schott, Apr 04 2017

Keywords

Comments

The representation n = 11_(n-1) is not accepted under the definition of a Brazilian number.
The records of this sequence are the highly Brazilian numbers; hence, this sequence is a supersequence of A329383.

Examples

			a(0) = 1 because 1 is the smallest non-Brazilian number.
a(4) = 40 because 40 = 1111_3 = 55_7 = 44_9 = 22_19 and 40 is the smallest integer with four Brazilian representations.
		

References

  • D. Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, 2012, page 420.

Crossrefs

Programs

  • Mathematica
    rep[n_] := Length@ Select[Range[2, n/2], 1 == Length@ Union@ IntegerDigits[n, #] &]; a[n_] := Block[{k=1}, While[rep[k] != n, k++]; k]; a /@ Range[0, 15] (* Giovanni Resta, Apr 04 2017 *)

A066044 Numbers k that are repdigits in more bases (smaller than k) than any smaller number.

Original entry on oeis.org

1, 3, 7, 15, 24, 40, 60, 120, 180, 336, 360, 720, 840, 1260, 1440, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880
Offset: 1

Views

Author

Erich Friedman, Dec 29 2001

Keywords

Comments

A repdigit has all digits the same in some base.
The number 3 isn't Brazilian (A125134) because 3 = 11_2 is an expansion of the type n = 11_(n-1), which is forbidden for Brazilian numbers. So, except for 3, all the terms here are highly Brazilian numbers (A329383). - Daniel Lignon, Dec 30 2019

Examples

			15 is in the sequence since 15 = 1111_2 = 33_4 = 11_14 and no smaller number is a repdigit in 3 different bases.
		

References

  • D. Lignon, Dictionnaire de (presque) tous les nombres entiers, Editions Ellipses, 2012, see p. 420. [In French.]

Crossrefs

Programs

  • Mathematica
    a = 0 Range[100]; Do[ c = 1; k = 2; While[ k < n-1, If[ Length[ Union[ IntegerDigits[n, k]]] == 1, c++ ]; k++ ]; If[a[[c]] == 0, a[[c]] = n; Print[c, " = ", n]], {n, 1, 200000} ]
  • PARI
    okrepu3(b, target, lim) = {my(k = 3, nb = 0, x); while ((x=(b^k-1)/(b-1)) <= target, if (x==target, nb++); k++); nb;}
    dge3(n, d) = {my(nb=0, ndi, limi); for (i=1, #d, ndi = n/d[i]; limi = sqrtint(ndi); for (k=d[i]+1, limi, nb += okrepu3(k, ndi, limi););); nb;}
    deq2(n, d) = {my(nb=0, nk); for (k=1, #d\2, nk = (n - d[k])/d[k]; if (nk > d[k], nb++);); nb;}
    beta23(n) = {if (n<3, return (0)); my(d=divisors(n)); deq2(n, d) + dge3(n, d);}
    lista(nn) = {my(m = -1, nm); for (n=1, nn, if ((nm=beta23(n)) > m, print1(n, ", "); m = nm););} \\ Michel Marcus, Jul 13 2019

Extensions

More terms from Robert G. Wilson v, Jan 02 2002
Offset changed to 1 by Giovanni Resta, Apr 05 2017
a(1) changed to 1 and new terms a(32)-a(41) from Giovanni Resta, Apr 05 2017

A242397 a(n) is the number of different bases b such that the Brazilian numbers A125134(n) remain a repdigit number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 1, 4, 3, 1, 2, 2, 1, 4, 2, 1, 2, 3, 1, 2, 2, 1, 5, 2, 4, 2, 1, 3, 2, 1, 3, 4, 1, 1, 2, 2, 1, 3, 5, 1, 1, 5, 2, 2, 1, 3, 4, 2, 2, 2, 1, 1, 5, 2, 2, 3, 3, 3, 3, 1, 5, 2, 2, 4, 4, 1, 2, 2, 1
Offset: 1

Views

Author

Michel Lagneau, May 13 2014

Keywords

Comments

For all numbers m, we restrict the bases b with 1 < b < m-1 because m is repdigit in bases 1 and also m-1.

Examples

			a(89) = 7 because A125134(89)=120 and the number 120 is AA in base 11 where A = 10, 88 in base 14, 66 in base 19, 55 in base 23, 44 in base 29, 33 in base 39 and 22 in base 59 => 7 representations.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 200 do:c:=0:for b from 2 to n-2 do:x:=convert(n,base,b):n1:=nops(x):a:=x[n1]:i:=1:for k from n1-1 by -1 to 1 do:if x[k]=a then i:=i+1:else fi:od:if i=n1 then c:=c+1:i:=1:else fi:od:if c>0 then printf(`%d, `,c):else fi:od:
Showing 1-4 of 4 results.