A067076 Numbers k such that 2*k + 3 is a prime.
0, 1, 2, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 22, 25, 28, 29, 32, 34, 35, 38, 40, 43, 47, 49, 50, 52, 53, 55, 62, 64, 67, 68, 73, 74, 77, 80, 82, 85, 88, 89, 94, 95, 97, 98, 104, 110, 112, 113, 115, 118, 119, 124, 127, 130, 133, 134, 137, 139, 140, 145, 152, 154, 155
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Mutsumi Suzuki, Vincenzo Librandi's method for sequential primes (Librandi's description in Italian).
Crossrefs
Programs
-
GAP
Filtered([0..200], k-> IsPrime(2*k+3) ); # G. C. Greubel, May 21 2019
-
Magma
[n: n in [0..200]| IsPrime(2*n+3)]; // Vincenzo Librandi, Feb 23 2012
-
Maple
select(t -> isprime(2*t+3), [$0..1000]); # Robert Israel, Feb 19 2015
-
Mathematica
(Prime[Range[100]+1]-3)/2 (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008, modified by G. C. Greubel, May 21 2019 *) Select[Range[0,200],PrimeQ[2#+3]&] (* Harvey P. Dale, Jun 10 2014 *)
-
PARI
[k | k<-[0..99], isprime(2*k+3)] \\ for illustration
-
PARI
A067076(n) = (prime(n+1)-3)/2 \\ M. F. Hasler, Feb 14 2024
-
Sage
[n for n in (0..200) if is_prime(2*n+3) ] # G. C. Greubel, May 21 2019
Formula
a(n) = A089253(n) - 4. - Giovanni Teofilatto, Dec 14 2003
Conjecture: a(n) = A008507(n) + n - 1 = A005097(n) - 1 = A102781(n+1) - 1. - R. J. Mathar, Jul 07 2009
Extensions
Offset changed from 0 to 1 in 2008: some formulas here and elsewhere may need to be corrected.
Comments