cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A066534 Total number of walks with length > 0 in the Hasse diagram of a Boolean algebra of order n.

Original entry on oeis.org

0, 1, 6, 30, 152, 840, 5232, 37072, 297600, 2680704, 26812160, 294945024, 3539364864, 46011796480, 644165265408, 9662479226880, 154599668154368, 2628194359738368, 47307498477649920, 898842471080329216
Offset: 0

Views

Author

Peter Bertok (peter(AT)bertok.com), Jan 07 2002

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n) = the total number of ways to add 1 or more elements of A to each element x of P(A) where the elements to add are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007

Examples

			a(2) = 6 because (2! / 0! * 2^0) + (2! / 1! * 2^1) = 6
		

Crossrefs

Programs

  • Mathematica
    a[ n_ ] := n!Sum[ 2^k/k!, {k, 0, n-1} ]
    Table[n*Gamma[n, 2]*E^2, {n, 0, 19}] (* Ross La Haye, Oct 09 2005 *)

Formula

a(n) = n!*Sum_{i+j= 0} 1/(i!*j!). - Benoit Cloitre, Nov 01 2002
E.g.f.: x*exp(2*x)/(1-x). a(n) = n*(a(n-1)+2^(n-1)). - Vladeta Jovovic, Oct 29 2003
a(n) = Sum_{k=0..n-1} (n! / k!) * 2^k = Sum_{k=0..n-1} P(n, n-k) * 2^k = n! * Sum_{k=0..n-1} 2^k / k! = Sum_{k=1..n} P(n, k) * 2^(n-k) = sum of the n-th row of A090802 from column 1 on = A010842(n) - 2^n = n * A010842(n-1) = binomial transform of A007526 - Ross La Haye, Sep 15 2004
E.g.f.: x/U(0) where U(k) = 1 - 2*x/(2 - 4/(2 + (k+1)/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 18 2012
Conjecture: a(n) + (-n-4)*a(n-1) + 4*(n)*a(n-2) + 4*(-n+2)*a(n-3) = 0. - R. J. Mathar, Dec 04 2012
a(n) ~ n! * exp(2). - Vaclav Kotesovec, Jun 01 2013
Mathar's conjectural third-order recurrence above is an easy consequence of Jovovic's first-order recurrence a(n) = n*(a(n-1) + 2^(n-1)). - Peter Bala, Sep 23 2013

Extensions

Edited by Dean Hickerson, Jan 12 2002
Entry revised by Ross La Haye, Aug 18 2006

A308876 Expansion of e.g.f. exp(x)*(1 - x)/(1 - 2*x).

Original entry on oeis.org

1, 2, 7, 40, 317, 3166, 37987, 531812, 8508985, 153161722, 3063234431, 67391157472, 1617387779317, 42052082262230, 1177458303342427, 35323749100272796, 1130359971208729457, 38432239021096801522, 1383560604759484854775, 52575302980860424481432
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 29 2019

Keywords

Comments

Binomial transform of A002866.

Crossrefs

Programs

  • Maple
    a:= n-> n! * add(ceil(2^(n-k-1))/k!, k=0..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 12 2019
  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[x] (1 - x)/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!
    Table[1 + Sum[Binomial[n,k] 2^(k - 1) k!, {k, 1, n}], {n, 0, 19}]

Formula

a(n) = 1 + Sum_{k=1..n} binomial(n,k) * 2^(k-1) * k!.
a(n) = A010844(n) - A067273(n).
a(n) ~ n! * 2^(n-1) * exp(1/2). - Vaclav Kotesovec, Jun 29 2019
a(n) = Sum_{k=0..n} k! * A271705(n,k). - Alois P. Heinz, Sep 12 2019
Showing 1-2 of 2 results.