A067611 Numbers of the form 6xy +- x +- y, where x, y are positive integers.
4, 6, 8, 9, 11, 13, 14, 15, 16, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 34, 35, 36, 37, 39, 41, 42, 43, 44, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94
Offset: 1
Keywords
Examples
4 = 6ab - a - b with a = 1, b = 1. 6 = 6ab + a - b or 6ab - a + b with a = 1, b = 1. 5 cannot be obtained by any values of a and b in 6ab - a - b, 6ab - a + b, 6ab + a - b or 6ab + a + b.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- F. Balestrieri, An Equivalent Problem To The Twin Prime Conjecture, arXiv:1106.6050 [math.GM], 2011.
Crossrefs
Programs
-
GAP
Filtered([1..120], k-> not IsPrime(6*k-1) or not IsPrime(6*k+1)) # G. C. Greubel, Feb 21 2019
-
Haskell
a067611 n = a067611_list !! (n-1) a067611_list = map (`div` 6) $ filter (\x -> a010051' (x-1) == 0 || a010051' (x+1) == 0) [6,12..] -- Reinhard Zumkeller, Jul 13 2014
-
Magma
[n: n in [1..100] | not IsPrime(6*n-1) or not IsPrime(6*n+1)]; // Vincenzo Librandi, Nov 19 2014
-
Maple
filter:= n -> not isprime(6*n+1) or not isprime(6*n-1): select(filter, [$1..1000]); # Robert Israel, Nov 18 2014
-
Mathematica
Select[Range[100], !PrimeQ[6# - 1] || !PrimeQ[6# + 1] &] Select[Range[100],AnyTrue[6#+{1,-1},CompositeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 05 2019 *)
-
PARI
for(n=1, 1e2, if(!isprime(6*n+1) || !isprime(6*n-1), print1(n", "))) \\ Altug Alkan, Nov 10 2015
-
Sage
[n for n in (1..120) if not is_prime(6*n-1) or not is_prime(6*n+1)] # G. C. Greubel, Feb 21 2019
Extensions
Edited by Robert G. Wilson v, Feb 05 2002
Edited by Dean Hickerson, May 07 2002
Comments