cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A076629 Duplicate of A067816.

Original entry on oeis.org

1, 5, 8585, 16119, 29886159
Offset: 1

Views

Author

Keywords

A246852 Numbers n such that sigma(n+2) - sigma(n) = n + 2.

Original entry on oeis.org

1, 2, 22, 14926, 31048, 69106, 246262, 5860168, 307164670, 881198662, 1489455646, 2386555630, 8225563702, 14311679062, 111494234182, 154357775302, 299004519622, 870455062822, 970388922262, 991817878342, 1677028870822, 1782783762502, 1830446935222
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2014

Keywords

Comments

Also numbers n such that A001065(n+2) = A000203(n). - Michel Marcus, Sep 06 2014

Examples

			Number 22 is in sequence because sigma(22+2) - sigma(22) = 60 - 36 = 24 = 22 + 2.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10^7] | SumOfDivisors(n+2)-SumOfDivisors(n) eq n+2]
    
  • Mathematica
    Select[Range[6*10^6], DivisorSigma[1, # + 2] - DivisorSigma[1, #] == # + 2 &] (* Jake L Lande, Jun 30 2024 *)
  • PARI
    for(n=1,10^7,if(sigma(n+2)-sigma(n)==n+2,print1(n,", "))) \\ Derek Orr, Sep 05 2014

Extensions

a(9)-a(14) from Hiroaki Yamanouchi, Sep 10 2014
a(15)-a(23) from Giovanni Resta, Jul 13 2015

A231366 Number of numbers whose sum of non-divisors (A024816) is equal to n.

Original entry on oeis.org

2, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Jaroslav Krizek, Nov 09 2013

Keywords

Comments

a(n) = frequency of values n in A024816(m), where A024816(m) = sum of non-divisors of m = antisigma(m).
From Charles R Greathouse IV, Nov 11 2013: (Start)
So far all n such that a(n) > 1 correspond to members of A067816:
a(0) = 2 from 1, 2;
a(9) = 2 from 5, 6;
a(36844389) = 2 from 8585, 8586;
a(129894940) = 2 from 16119, 16120;
a(446591224981504) = 2 from 29886159, 29886160.
I checked this, and thus Krizek's conjecture below, up to 4*10^19.
(End)

Examples

			a(9) = 2 because there are two numbers m (5, 6) with antisigma(m) = 9.
		

Crossrefs

Cf. A054973 (number of numbers whose divisors sum to n), A231365, A231368, A231367, A231369, A067816.

Programs

  • PARI
    up_to = 105;
    A024816(n) = (n*(n+1)/2-sigma(n));
    A231366list(up_to) = { my(v=vector(1+up_to), u); for(n=1, 2+up_to, if((u = A024816(n))<=up_to, v[1+u]++)); (v); };
    v231366 = A231366list(up_to);
    A231366(n) = v231366[1+n]; \\ Antti Karttunen, Jan 19 2025

Formula

Conjecture: max a(n) = 2.
a(A231368(n)) >= 1, a(A231369(n)) = 0.
a(n) = 0 for such n that A231367(n) = 0, a(n) = 0 if A024816(m) = n has no solution.
a(n) >= 1 for such n that A231367(n) = 1, a(n) >= 1 if A024816(m) = n for any m.
Conjecture: a(n) = 2 iff n is number from A225775 (0, 9, 36844389, 129894940, 446591224981504, …)

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 19 2025

A246851 a(n) = smallest number k such that sigma(k+n) - sigma(k) = k + n, or -1 if no solution exists.

Original entry on oeis.org

1, 1, 7, 1, 3577, 1, 25, 8, 13, 1, 403668223, 1, 833, 262, 19, 1, 27, 1, 793, 5, 45, 1, 1795, 66, 8, 9, 31, 1, 2005, 1, 309, 32, 261, 4238, 22490141, 1, 21, 40, 43, 1, 399, 1, 1897, 262, 193, 1, 27, 1252907952, 711, 49, 1158765, 1, 271259, 27, 129, 20518072
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2014

Keywords

Comments

a(p-1) = 1 for any prime p.
a(11) > 11*10^8. - Derek Orr, Sep 05 2014
a(35) > 88*10^7. - Derek Orr, Sep 05 2014
a(185), a(385) and a(869) > 10^11. - Hiroaki Yamanouchi, Sep 11 2014

Examples

			Sequence of numbers k < 10^7  such that sigma(k+n) - sigma(k) = k + n for 1 <= n <= 10:
n = 1: 1, 5, 8585, 16119, ... (A067816).
n = 2: 1, 2, 22, 14926, 31048, 69106, 246262, 5860168, ... (A246852).
n = 3: 7, 6285, 4693485, ... (A246853).
n = 4: 1, 4, 26, 122, 146, 458, 746, 3746, 47612, ... (A246854).
n = 5: 3577, 14773, 2843579, ... (A246855).
n = 6: 1, 3, 114, 116058, 340014, ...
n = 7: 25, 65017, ...
n = 8: 8, 34, 76, 13474, 19042, ...
n = 9: 13, 1743, 1773, 4323, 53175, 109035, 138535, ...
n = 10: 1, 20, 1958, 35150, 49010, 246686, 1030046, 1240694, ...
		

Crossrefs

Programs

Extensions

a(11)-a(56) from Hiroaki Yamanouchi, Sep 11 2014

A246853 Numbers n such that sigma(n+3) - sigma(n) = n + 3.

Original entry on oeis.org

7, 6285, 4693485, 54028959, 75898473, 724416741, 2359059709, 4901493769, 321212249593, 511578306649, 534245763769, 6158645822473
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2014

Keywords

Comments

Also numbers n such that A001065(n+3) = A000203(n). - Michel Marcus, Sep 06 2014
a(13) > 10^13. - Giovanni Resta, Jul 13 2015

Examples

			Number 7 is in sequence because sigma(7+3) - sigma(7) = 18 - 8 = 10 = 7 + 3.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10^7] | SumOfDivisors(n+3)-SumOfDivisors(n) eq n+3]
    
  • PARI
    for(n=1,10^7,if(sigma(n+3)-sigma(n)==n+3,print1(n,", "))) \\ Derek Orr, Sep 05 2014

Extensions

a(4)-a(8) from Hiroaki Yamanouchi, Sep 10 2014
a(9)-a(12) from Giovanni Resta, Jul 13 2015

A246854 Numbers n such that sigma(n+4) - sigma(n) = n + 4.

Original entry on oeis.org

1, 4, 26, 122, 146, 458, 746, 3746, 47612, 16065500, 388978292, 5313509288, 64278616556
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2014

Keywords

Comments

Also numbers n such that A001065(n+4) = A000203(n). - Michel Marcus, Sep 06 2014
a(14) (if it exists) > 10^11. - Hiroaki Yamanouchi, Sep 10 2014
a(14) (if it exists) > 10^13. - Giovanni Resta, Jul 13 2015

Examples

			Number 26 is in sequence because sigma(26+4) - sigma(26) = 72 - 42 = 30 = 26 + 4.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10^7] | SumOfDivisors(n+4)-SumOfDivisors(n) eq n+4]
    
  • PARI
    for(n=1,10^7,if(sigma(n+4)-sigma(n)==n+4,print1(n,", "))) \\ Derek Orr, Sep 05 2014

Extensions

a(10)-a(13) from Hiroaki Yamanouchi, Sep 10 2014

A246855 Numbers k such that sigma(k+5) - sigma(k) = k + 5.

Original entry on oeis.org

3577, 14773, 2843579
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2014

Keywords

Comments

Also numbers k such that A001065(k+5) = A000203(k). - Michel Marcus, Sep 06 2014
a(4) (if it exists) > 10^11. - Hiroaki Yamanouchi, Sep 10 2014
a(4) (if it exists) > 10^13. - Giovanni Resta, Jul 13 2015
No other terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			Number 3577 is in sequence because sigma(3577+5) - sigma(3577) = 7800 - 4218 = 3582 = 3577 + 5.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10^7] | SumOfDivisors(n+5)-SumOfDivisors(n) eq n+5];
    
  • Mathematica
    Select[Range[285*10^4],DivisorSigma[1,#+5]-DivisorSigma[1,#]==#+5&] (* Harvey P. Dale, Jun 21 2024 *)
  • PARI
    for(n=1,10^7,if(sigma(n+5)-sigma(n)==n+5,print1(n,", "))) \\ Derek Orr, Sep 05 2014

A231545 Numbers n such that n = sigma(n) - sigma(n-1).

Original entry on oeis.org

2, 6, 8586, 16120, 29886160
Offset: 1

Views

Author

Jaroslav Krizek, Nov 11 2013

Keywords

Comments

Also, numbers n such that antisigma(n) = antisigma(n-1), where antisigma(n) = A024816(n) = the sum of the non-divisors of n that are between 1 and n.
Numbers n such that A163553(n-1) = 0.

Examples

			6 is in sequence because antisigma(6) = antisigma(5) = 9.
		

Crossrefs

Cf. A067816, A024816 (antisigma(n)), A231546 (numbers n such that sigma(n) = sigma(n-1)).

Formula

a(n) = A067816(n) + 1.

A225775 Numbers k such that antisigma(x) = antisigma(x+1) = k has solution.

Original entry on oeis.org

0, 9, 36844389, 129894940, 446591224981504
Offset: 1

Views

Author

Jaroslav Krizek, Jul 26 2013

Keywords

Comments

Antisigma(n) = A024816(n) = the sum of the nondivisors of n that are between 1 and n.
Conjecture: also numbers k such that antisigma(n) = antisigma(m) = k has solution for distinct numbers n and m. - Jaroslav Krizek, Nov 10 2013

Examples

			36844389 is in the sequence because 36844389 = antisigma(8585) = antisigma(8586).
		

Crossrefs

Cf. A067816 (numbers n such that antisigma(n) = antisigma(n+1)).

A227305 Numbers n such that sigma(n) - sigma(n-1) divides n.

Original entry on oeis.org

2, 3, 5, 6, 10, 19, 52, 118, 1054, 3201, 8586, 9802, 16120, 60556, 140698, 145216, 11273536, 29886160, 44868748, 8748377956, 325377469696, 2368739714188
Offset: 1

Views

Author

Alex Ratushnyak, Jul 05 2013

Keywords

Comments

a(23) > 2.5*10^12. - Giovanni Resta, Jul 13 2013

Crossrefs

Extensions

a(21)-a(22) from Giovanni Resta, Jul 13 2013
Showing 1-10 of 11 results. Next