cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002379 a(n) = floor(3^n / 2^n).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 17, 25, 38, 57, 86, 129, 194, 291, 437, 656, 985, 1477, 2216, 3325, 4987, 7481, 11222, 16834, 25251, 37876, 56815, 85222, 127834, 191751, 287626, 431439, 647159, 970739, 1456109, 2184164, 3276246, 4914369, 7371554, 11057332
Offset: 0

Views

Author

Keywords

Comments

It is an important unsolved problem related to Waring's problem to show that a(n) = floor((3^n-1)/(2^n-1)) holds for all n > 1. This has been checked for 10000 terms and is true for all sufficiently large n, by a theorem of Mahler. [Lichiardopol]
a(n) = floor((3^n-1)/(2^n-1)) holds true at least for 2 <= n <= 305000. - Hieronymus Fischer, Dec 31 2008
a(n) is also the curve length (rounded down) of the Sierpiński arrowhead curve after n iterations, let a(0) = 1. - Kival Ngaokrajang, May 21 2014
a(n) is composite infinitely often (Forman and Shapiro). More exactly, a(n) is divisible by at least one of 2, 5, 7 or 11 infinitely often (Dubickas and Novikas). - Tomohiro Yamada, Apr 15 2017

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
  • S. S. Pillai, On Waring's problem, J. Indian Math. Soc., 2 (1936), 16-44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046037, A070758, A070759, A067904 (Composites and Primes).
Cf. A064628 (an analog for 4/3).

Programs

Formula

a(n) = b(n) - (-2/3)^n where b(n) is defined by the recursion b(0):=2, b(1):=5/6, b(n+1):=(5/6)*b(n) + b(n-1). - Hieronymus Fischer, Dec 31 2008
a(n) = (1/2)*(b(n) + sqrt(b(n)^2 - (-4)^n)) (with b(n) as defined above). - Hieronymus Fischer, Dec 31 2008
3^n = a(n)*2^n + A002380(n). - R. J. Mathar, Oct 26 2012
a(n) = -(1/2) + (3/2)^n + arctan(cot((3/2)^n Pi)) / Pi. - Fred Daniel Kline, Apr 14 2018
a(n+1) = round( -(1/2) + (3^n-1)/(2^n-1) ). - Fred Daniel Kline, Apr 14 2018

Extensions

More terms from Robert G. Wilson v, May 11 2004

A070759 n for which floor((3/2)^n) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 21, 22, 98, 106, 164, 189, 219, 364, 443, 670, 775, 1919, 2204, 2715, 3692, 4228, 4912, 10466, 12300, 14087, 21659, 28170, 55832, 66577, 87309, 87505, 98144, 167512, 259517
Offset: 1

Views

Author

Eric W. Weisstein, May 04 2002

Keywords

Comments

No more terms through 500000. - Ryan Propper, Dec 28 2008

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19

Crossrefs

Indices of primes in A002379.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ Floor[(3/2)^n]], Print[n]], {n, 1, 12500}]

Extensions

One more term from Ralf Stephan, Oct 13 2002
Corrected and extended by Robert G. Wilson v, Jan 15 2003
More terms from Ryan Propper, Jan 25 2008
6 more terms from Ryan Propper, Dec 28 2008

A070758 Values of floor((3/2)^n) that are composite.

Original entry on oeis.org

25, 38, 57, 86, 129, 194, 291, 437, 656, 985, 1477, 2216, 3325, 11222, 16834, 25251, 37876, 56815, 85222, 127834, 191751, 287626, 431439, 647159, 970739, 1456109, 2184164, 3276246, 4914369, 7371554, 11057332, 16585998, 24878997, 37318496
Offset: 1

Views

Author

Eric W. Weisstein, May 04 2002

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19

Crossrefs

Composites in A002379.

Programs

  • Maple
    remove(isprime, [seq(floor((3/2)^n),n=2..100)]); # Robert Israel, Oct 30 2019
  • Mathematica
    Select[Floor[(3/2)^Range[50]],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 11 2017 *)

A067903 Primes of the form floor((10/9)^k).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 67, 83, 103, 127, 157, 239, 1163, 13127, 78713, 97177, 225749, 1218277, 1353641, 3144587, 4792847, 753274331, 27083690849, 38902247855599, 14203460502855187, 630469131840565313, 7903939395078324527, 815029233346016629931
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

Programs

Formula

127 is in the sequence because floor((10/9)^46) = 127.
Showing 1-4 of 4 results.