cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002379 a(n) = floor(3^n / 2^n).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 17, 25, 38, 57, 86, 129, 194, 291, 437, 656, 985, 1477, 2216, 3325, 4987, 7481, 11222, 16834, 25251, 37876, 56815, 85222, 127834, 191751, 287626, 431439, 647159, 970739, 1456109, 2184164, 3276246, 4914369, 7371554, 11057332
Offset: 0

Views

Author

Keywords

Comments

It is an important unsolved problem related to Waring's problem to show that a(n) = floor((3^n-1)/(2^n-1)) holds for all n > 1. This has been checked for 10000 terms and is true for all sufficiently large n, by a theorem of Mahler. [Lichiardopol]
a(n) = floor((3^n-1)/(2^n-1)) holds true at least for 2 <= n <= 305000. - Hieronymus Fischer, Dec 31 2008
a(n) is also the curve length (rounded down) of the Sierpiński arrowhead curve after n iterations, let a(0) = 1. - Kival Ngaokrajang, May 21 2014
a(n) is composite infinitely often (Forman and Shapiro). More exactly, a(n) is divisible by at least one of 2, 5, 7 or 11 infinitely often (Dubickas and Novikas). - Tomohiro Yamada, Apr 15 2017

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
  • S. S. Pillai, On Waring's problem, J. Indian Math. Soc., 2 (1936), 16-44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046037, A070758, A070759, A067904 (Composites and Primes).
Cf. A064628 (an analog for 4/3).

Programs

Formula

a(n) = b(n) - (-2/3)^n where b(n) is defined by the recursion b(0):=2, b(1):=5/6, b(n+1):=(5/6)*b(n) + b(n-1). - Hieronymus Fischer, Dec 31 2008
a(n) = (1/2)*(b(n) + sqrt(b(n)^2 - (-4)^n)) (with b(n) as defined above). - Hieronymus Fischer, Dec 31 2008
3^n = a(n)*2^n + A002380(n). - R. J. Mathar, Oct 26 2012
a(n) = -(1/2) + (3/2)^n + arctan(cot((3/2)^n Pi)) / Pi. - Fred Daniel Kline, Apr 14 2018
a(n+1) = round( -(1/2) + (3^n-1)/(2^n-1) ). - Fred Daniel Kline, Apr 14 2018

Extensions

More terms from Robert G. Wilson v, May 11 2004

A070762 n for which floor((4/3)^n) is prime.

Original entry on oeis.org

3, 4, 6, 7, 9, 10, 11, 12, 38, 42, 59, 96, 154, 171, 211, 313, 465, 563, 1040, 1176, 1213, 1431, 1519, 1987, 2527, 3033, 4039, 4209, 4358, 5109, 5251, 6642, 19200, 25275, 42589, 43025, 49294, 58585, 66290, 77458, 80409, 86533, 94192, 110452, 115166, 124470
Offset: 1

Views

Author

Eric W. Weisstein, May 04 2002

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ Floor[(4/3)^n]], Print[n]], {n, 1, 17500}]
    Select[Range[7000],PrimeQ[Floor[(4/3)^#]]&] (* The program generates the first 32 terms of the sequence. *) (* Harvey P. Dale, Oct 02 2024 *)

Extensions

Corrected by Robert G. Wilson v, Jan 15 2003
More terms from Ryan Propper, Jan 25 2008

A067904 Primes of the form floor((3/2)^k).

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 4987, 7481, 180693856682317883, 4630985912862061063, 75677449184722757264165738713, 1910944005427272291238064043761449, 366425537175409658704814112327931286021
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19.

Crossrefs

Programs

A070758 Values of floor((3/2)^n) that are composite.

Original entry on oeis.org

25, 38, 57, 86, 129, 194, 291, 437, 656, 985, 1477, 2216, 3325, 11222, 16834, 25251, 37876, 56815, 85222, 127834, 191751, 287626, 431439, 647159, 970739, 1456109, 2184164, 3276246, 4914369, 7371554, 11057332, 16585998, 24878997, 37318496
Offset: 1

Views

Author

Eric W. Weisstein, May 04 2002

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19

Crossrefs

Composites in A002379.

Programs

  • Maple
    remove(isprime, [seq(floor((3/2)^n),n=2..100)]); # Robert Israel, Oct 30 2019
  • Mathematica
    Select[Floor[(3/2)^Range[50]],CompositeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 11 2017 *)

A072924 Least k such that floor((1+1/k)^n) is prime.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 4, 3, 3, 3, 3, 6, 8, 7, 6, 6, 7, 5, 11, 2, 2, 9, 4, 6, 10, 5, 9, 5, 6, 4, 7, 10, 11, 7, 6, 4, 3, 10, 4, 4, 3, 5, 4, 17, 6, 11, 7, 5, 14, 12, 8, 6, 11, 4, 14, 8, 7, 3, 16, 4, 21, 8, 12, 7, 8, 7, 7, 18, 12, 8, 17, 10, 12, 28, 6, 24, 16, 12, 16, 18, 7, 6, 6, 7, 11, 8, 14, 24, 8
Offset: 1

Views

Author

Benoit Cloitre, Aug 11 2002

Keywords

Comments

a(n) = 2 for n in A070759. a(n) = 3 for n in A070762 but not in A070759. - Robert Israel, Jan 09 2018

References

  • R. K. Guy, Unsolved Problems in Number Theory, E19

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
      for k from 1 do if isprime(floor((1+1/k)^n)) then return k fi od
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 09 2018
  • Mathematica
    lkp[n_]:=Module[{k=1},While[!PrimeQ[Floor[(1+1/k)^n]],k++];k]; Array[ lkp,90] (* Harvey P. Dale, Dec 02 2018 *)
  • PARI
    a(n)=if(n<0,0,s=1; while(isprime(floor((1+1/s)^n)) == 0,s++); s)

Formula

It seems that a(n)/sqrt(n) is bounded. More precisely for n large enough it seems that (1/2)*sqrt(n) < a(n) < 3*sqrt(n).
On the contrary, A.L. Whiteman conjectured that the sequence floor(r^n) for non-integer rational r > 1 always contains infinitely many primes. If this conjecture is true for some r=1+1/k, then lim inf_{n -> infinity} a(n) is finite. - Robert Israel, Jan 09 2018
Showing 1-5 of 5 results.