A039770 Numbers k such that phi(k) is a perfect square.
1, 2, 5, 8, 10, 12, 17, 32, 34, 37, 40, 48, 57, 60, 63, 74, 76, 85, 101, 108, 114, 125, 126, 128, 136, 160, 170, 185, 192, 197, 202, 204, 219, 240, 250, 257, 273, 285, 292, 296, 304, 315, 364, 370, 380, 394, 401, 432, 438, 444, 451, 456, 468, 489, 504, 505
Offset: 1
Examples
phi(34) = 16 = 4*4.
References
- D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, p. 141.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- W. D. Banks, J. B. Friedlander, C. Pomerance and I. E. Shparlinski, Multiplicative structure of values of the Euler function, in High Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams (A. Van der Poorten, ed.), Fields Inst. Comm. 41 (2004), pp. 29-47.
- P. Pollack and C. Pomerance, Square values of Euler's function, submitted for publication.
- Bernard Schott, Subfamilies and subsequences
Crossrefs
Programs
-
Maple
with(numtheory); isA039770 := proc (n) return issqr(phi(n)) end proc; seq(`if`(isA039770(n), n, NULL), n = 1 .. 505); # Nathaniel Johnston, Oct 09 2013
-
Mathematica
Select[ Range[ 600 ], IntegerQ[ Sqrt[ EulerPhi[ # ] ] ]& ]
-
PARI
for(n=1, 120, if (issquare(eulerphi(n)), print1(n, ", ")))
-
Python
from math import isqrt from sympy import totient as phi def ok(n): return isqrt(p:=phi(n))**2 == p print([k for k in range(1, 506) if ok(k)]) # Michael S. Branicky, Aug 17 2025
Formula
a(n) seems to be asymptotic to c*n^(3/2) with 1 < c < 1.3. - Benoit Cloitre, Sep 08 2002
Banks, Friedlander, Pomerance, and Shparlinski show that a(n) = O(n^1.421). - Charles R Greathouse IV, Aug 24 2009
Comments