cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007781 a(n) = (n+1)^(n+1) - n^n for n>0, a(0) = 1.

Original entry on oeis.org

1, 3, 23, 229, 2869, 43531, 776887, 15953673, 370643273, 9612579511, 275311670611, 8630788777645, 293959006143997, 10809131718965763, 426781883555301359, 18008850183328692241, 808793517812627212561
Offset: 0

Views

Author

Peter McCormack (peter.mccormack(AT)its.csiro.au)

Keywords

Comments

(12n^2 + 6n + 1)^2 divides a(6n+1), where (12n^2 + 6n + 1) = (2n+1)^3 - (2n)^3 = A127854(n) = A003215(2n) are the hex (or centered hexagonal) numbers. The prime numbers of the form 12n^2 + 6n + 1 belong to A002407. - Alexander Adamchuk, Apr 09 2007

Examples

			a(14) = 10809131718965763 = 3 * 61^2 * 968299894201.
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).

Crossrefs

Programs

Formula

a(n) = A000312(n+1) - A000312(n) for n>0, a(0) = 1.
a(n) = abs(discriminant(x^(n+1)-x+1)).
E.g.f.: W(-x)/(1+W(-x)) - W(-x)/((1+W(-x))^3*x) where W is the Lambert W function. - Robert Israel, Aug 19 2015
Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - Amiram Eldar, Jan 03 2022

A068955 Greatest prime factor of n^n - (n-1)^(n-1).

Original entry on oeis.org

3, 23, 229, 151, 431, 776887, 14731, 109, 80317, 275311670611, 19395030961, 10423708597, 968299894201, 19428121, 165218809021364149, 808793517812627212561, 3979203955386313, 588489604729898953429, 2126173979464312447783, 5043293621028391, 90772326303985278570534379
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 11 2002

Keywords

Examples

			A007781(14) = 10809131718965763 = 3 * 61^2 * 968299894201, therefore a(14) = 968299894201.
		

Crossrefs

Programs

  • Maple
    a:= n-> max(map(i-> i[1], ifactors(n^n-(n-1)^(n-1))[2])):
    seq(a(n), n=2..23);  # Alois P. Heinz, Mar 10 2019
  • Mathematica
    a[n_] := FactorInteger[n^n - (n-1)^(n-1)][[-1, 1]]; Array[a, 20, 2] (* Amiram Eldar, Feb 06 2020 *)
  • PARI
    a(n) = vecmax(factor(n^n-(n-1)^(n-1))[,1]); \\ Daniel Suteu, Mar 10 2019

Formula

a(n) = A006530(A007781(n-1)).

Extensions

a(18)-a(22) from Daniel Starodubtsev, Mar 10 2019
Showing 1-2 of 2 results.