cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007781 a(n) = (n+1)^(n+1) - n^n for n>0, a(0) = 1.

Original entry on oeis.org

1, 3, 23, 229, 2869, 43531, 776887, 15953673, 370643273, 9612579511, 275311670611, 8630788777645, 293959006143997, 10809131718965763, 426781883555301359, 18008850183328692241, 808793517812627212561
Offset: 0

Views

Author

Peter McCormack (peter.mccormack(AT)its.csiro.au)

Keywords

Comments

(12n^2 + 6n + 1)^2 divides a(6n+1), where (12n^2 + 6n + 1) = (2n+1)^3 - (2n)^3 = A127854(n) = A003215(2n) are the hex (or centered hexagonal) numbers. The prime numbers of the form 12n^2 + 6n + 1 belong to A002407. - Alexander Adamchuk, Apr 09 2007

Examples

			a(14) = 10809131718965763 = 3 * 61^2 * 968299894201.
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).

Crossrefs

Programs

Formula

a(n) = A000312(n+1) - A000312(n) for n>0, a(0) = 1.
a(n) = abs(discriminant(x^(n+1)-x+1)).
E.g.f.: W(-x)/(1+W(-x)) - W(-x)/((1+W(-x))^3*x) where W is the Lambert W function. - Robert Israel, Aug 19 2015
Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - Amiram Eldar, Jan 03 2022

A068954 Smallest prime factor of n^n-(n-1)^(n-1).

Original entry on oeis.org

3, 23, 229, 19, 101, 776887, 3, 7, 29, 275311670611, 5, 28201, 3, 52489, 109, 808793517812627212561, 9680119, 5, 3, 1137694897331, 3697, 29, 6361, 10667, 3, 23, 17787551, 41393681953973, 7, 4211, 3, 461, 83, 19, 31, 983, 3, 5, 89, 2251, 250460976091, 109, 3, 29
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 11 2002

Keywords

Examples

			A007781(14) = 10809131718965763 = 3 * 61^2 * 968299894201, therefore a(14) = 3.
		

Crossrefs

Formula

a(n) = A020639(A007781(n)).

Extensions

a(20)-a(40) from Daniel Starodubtsev, Mar 10 2019
a(41)-a(45) from Chai Wah Wu, Jul 15 2019

A127854 Largest number k such that k^2 divides A007781(6n+1).

Original entry on oeis.org

19, 61, 127, 217, 331, 469, 631, 817, 1027, 1261, 1519, 1801, 2107, 2437, 2791, 3169, 3571, 3997, 4447, 4921, 5419, 5941, 6487, 7057, 7651, 8269, 8911, 9577, 10267, 10981, 11719, 12481, 13267, 14077, 14911, 15769, 16651, 17557, 18487, 19441
Offset: 1

Views

Author

Alexander Adamchuk, Apr 05 2007

Keywords

Comments

A007781(n) = (n+1)^(n+1) - n^n. A007781(6n+1) is not squarefree for n > 0. a(n) is the largest square divisor of A007781(6n+1). All terms belong to A003215 Hex (or centered hexagonal) numbers: 3n(n+1)+1 (crystal ball sequence for hexagonal lattice). It appears that a(n) = A003215(2n) = 6n(2n+1)+1. A007781(6n+1)/A003215(2n)^2 = ((6n+2)^(6n+2)-(6n+1)^(6n+1))/(6n(2n+1)+1)^2 = {44193, 2904899682603, 6378521938392937343349, 128847538453506016002947264859159, 13183819636551142123977274666051092130410345, ...}. Prime terms of a(n) belong to A002407. Factorizations of the terms of a(n) are {19, 61, 127, 7*31, 331, 7*67, 631, 19*43, 13*79, 13*97, 7*7*31, 1801, 7*7*43, 2437, 2791, 3169, 3571, 7*571, 4447, 7*19*37, 5419, 13*457, 13*499, 7067, 7*1093, 8269, 7*19*67, 61*157, 10267, 79*139, ...}. All prime factors of a(n) are of the form 6k+1.

Crossrefs

Cf. A007781 = (n+1)^(n+1) - n^n. Cf. A000312, A068955, A003215, A002407.

Formula

Conjecture: a(n) = 12n^2 + 6n + 1.
Conjecture: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); g.f.: x*(19 + 4*x + x^2)/(1-x)^3. - Colin Barker, Mar 16 2012
These conjectures are false. For n=74, 12*n^2 + 6*n + 1 = 66157 but A007781(6*74+1) is divisible by 5491031^2. - Robert Israel, Nov 19 2017

Extensions

a(24) corrected by T. D. Noe, Mar 14 2008

A162591 Primes in A007781.

Original entry on oeis.org

3, 23, 229, 776887, 275311670611, 808793517812627212561, 47962816398523117606189726043968411848519304708598059350620557763277694737755820158580941773369740112983781265183299561695077810144494290292906506606685128216915382107158604900927276535058149770652889252352435564631
Offset: 1

Views

Author

Keywords

Comments

See A072164 for a condensed representation of the same information.

Examples

			3^3-2^2=27-4=23 is prime and enters the list.
		

Crossrefs

Cf. A068955.

Programs

  • Mathematica
    f[n_]:=n^n-(n-1)^(n-1); lst={};Do[If[PrimeQ[f[n]],AppendTo[lst,f[n]]], {n,2,5!}];lst

Extensions

Definition simplified, reference to A072164 and A068955 added by R. J. Mathar, Aug 11 2009
Showing 1-4 of 4 results.