A069038 Expansion of g.f. x*(1+x)^4/(1-x)^6.
0, 1, 10, 51, 180, 501, 1182, 2471, 4712, 8361, 14002, 22363, 34332, 50973, 73542, 103503, 142544, 192593, 255834, 334723, 432004, 550725, 694254, 866295, 1070904, 1312505, 1595906, 1926315, 2309356, 2751085, 3258006, 3837087, 4495776, 5242017, 6084266
Offset: 0
References
- H. S. M. Coxeter, Regular Polytopes, New York: Dover Publications, 1973.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[n*(2*n^4 + 10*n^2 + 3)/15: n in [0..40]]; // Vincenzo Librandi, May 22 2011
-
Maple
al:=proc(s,n) binomial(n+s-1,s); end; be:=proc(d,n) local r; add( (-1)^r*binomial(d-1,r)*2^(d-1-r)*al(d-r,n), r=0..d-1); end; [seq(be(5,n),n=0..100)];
-
Mathematica
CoefficientList[Series[x (1 + x)^4/(1 - x)^6, {x, 0, 32}], x] (* Michael De Vlieger, Sep 02 2016 *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,10,51,180,501},40] (* Harvey P. Dale, Jun 19 2021 *)
-
PARI
concat(0, Vec(x*(1+x)^4/(1-x)^6 + O(x^99))) \\ Altug Alkan, Sep 02 2016
-
PARI
{a(n) = n * (2*n^4 + 10*n^2 + 3) / 15}; /* Michael Somos, Jun 17 2018 */
Formula
Recurrence: a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = n*(2*n^4 + 10*n^2 + 3)/15. - Jonathan Vos Post, Nov 16 2004
a(n) = C(n+4,5) + 4*C(n+3,5) + 6*C(n+2,5) + 4*C(n+1,5) + C(n,5).
Sum_{n>=1} 1/((1/15)*n*(2*n^4 + 10*n^2 + 3)*n!) = hypergeom([1, 1, 1+i*sqrt(10-2*sqrt(19))*(1/2), 1-i*sqrt(10-2*sqrt(19))*(1/2), 1+i*sqrt(10+2*sqrt(19))*(1/2), 1-i*sqrt(10+2*sqrt(19))*(1/2)], [2, 2, 2+i*sqrt(10-2*sqrt(19))*(1/2), 2-i*sqrt(10-2*sqrt(19))*(1/2), 2+i*sqrt(10+2*sqrt(19))*(1/2), 2-i*sqrt(10+2*sqrt(19))*(1/2)], 1) = 1.05351734968093116819345664995829700099916... - Stephen Crowley, Jul 14 2009
a(n) = 10*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018
Euler transform of length 2 sequence [10, -4]. - Michael Somos, Jun 19 2018
Sum_{k >= 1} (-1)^k/(a(k)*a(k+1)) = 10*log(2) - 41/6 = 1/(10 + 2/(10 + 6/(10 + ... + n*(n-1)/(10 + ...)))). See A142983. Cf. A005900 and A014820. - Peter Bala, Mar 08 2024
E.g.f.: exp(x)*x*(15 + 60*x + 60*x^2 + 20*x^3 + 2*x^4)/15. - Stefano Spezia, Mar 10 2024
Comments