A069099 Centered heptagonal numbers.
1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, 547, 638, 736, 841, 953, 1072, 1198, 1331, 1471, 1618, 1772, 1933, 2101, 2276, 2458, 2647, 2843, 3046, 3256, 3473, 3697, 3928, 4166, 4411, 4663, 4922, 5188, 5461, 5741, 6028, 6322, 6623, 6931, 7246
Offset: 1
Examples
a(5) = 71 because 71 = (7*5^2 - 7*5 + 2)/2 = (175 - 35 + 2)/2 = 142/2. From _Bruno Berselli_, Oct 27 2017: (Start) 1 = -(0) + (1). 8 = -(0+1) + (2+3+4). 22 = -(0+1+2) + (3+4+5+6+7). 43 = -(0+1+2+3) + (4+5+6+7+8+9+10). 71 = -(0+1+2+3+4) + (5+6+7+8+9+10+11+12+13). (End)
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Nicolas Bělohoubek and Viktor Javor, Centered heptagonal numbers appearing in aperiodic heptagonal tiling
- Leo Tavares, Illustration: Crystal Numbers
- Eric Weisstein's World of Mathematics, Centered Polygonal Numbers.
- Index entries for sequences related to centered polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Haskell
a069099 n = length [(x,y) | x <- [-n+1..n-1], y <- [-n+1..n-1], x + y <= n - 1] -- Reinhard Zumkeller, Jan 23 2012
-
Mathematica
FoldList[#1 + #2 &, 1, 7 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *) LinearRecurrence[{3,-3,1},{1,8,22},50] (* Harvey P. Dale, Jun 04 2011 *)
-
PARI
a(n)=(7*n^2-7*n+2)/2 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = (7*n^2 - 7*n + 2)/2.
a(n) = 1 + Sum_{k=1..n} 7*k. - Xavier Acloque, Oct 26 2003
Binomial transform of [1, 7, 7, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 7, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 7*n + a(n-1) - 7 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1+5*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=8, a(2)=22. - Harvey P. Dale, Jun 04 2011
a(n) = A024966(n-1) + 1. - Omar E. Pol, Oct 03 2011
a(n) = 2*a(n-1) - a(n-2) + 7. - Ant King, Jun 17 2012
From Ant King, Jun 17 2012: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi/sqrt(7)*tanh(Pi/(2*sqrt(7))) = 1.264723171685652...
a(n) == 1 (mod 7) for all n.
The sequence of digital roots of the a(n) is period 9: repeat [1, 8, 4, 7, 8, 7, 4, 8, 1] (the period is a palindrome).
The sequence of a(n) mod 10 is period 20: repeat [1, 8, 2, 3, 1, 6, 8, 7, 3, 6, 6, 3, 7, 8, 6, 1, 3, 2, 8, 1] (the period is a palindrome).
(End)
E.g.f.: -1 + (2 + 7*x^2)*exp(x)/2. - Ilya Gutkovskiy, Jun 30 2016
a(n) = A101321(7,n-1). - R. J. Mathar, Jul 28 2016
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 9*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 9/(2*e) - 1. (End)
Comments