cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069072 a(n) = (2n+1)*(2n+2)*(2n+3).

Original entry on oeis.org

6, 60, 210, 504, 990, 1716, 2730, 4080, 5814, 7980, 10626, 13800, 17550, 21924, 26970, 32736, 39270, 46620, 54834, 63960, 74046, 85140, 97290, 110544, 124950, 140556, 157410, 175560, 195054, 215940, 238266, 262080, 287430, 314364, 342930
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Terms are areas of primitive Pythagorean triangles whose odd sides differ by 2; e.g., the triangle with sides 8,15,17 has area 60. - Lekraj Beedassy, Apr 18 2003
Using (n, n+1), (n, n+2), and (n+1, n+2) to generate three unreduced Pythagorean triangles gives a sum of the areas for all three to be (2*n+1)*(2*n+2)*(2*n+3), which are three consecutive numbers. - J. M. Bergot, Aug 22 2011

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 190.
  • Jolley, Summation of Series, Oxford (1961).
  • Konrad Knopp, Theory and application of infinite series, Dover, p. 269.

Crossrefs

Programs

  • Mathematica
    Array[Times@@(2#+{1,2,3})&,40,0] (* or *) LinearRecurrence[{4,-6,4,-1},{6,60,210,504},40] (* Harvey P. Dale, Dec 08 2013 *)
  • PARI
    a(n)=(2*n+1)*(2*n+2)*(2*n+3) \\ Charles R Greathouse IV, Oct 07 2015

Formula

log(2) - 1/2 = Sum_{n>=0} 1/a(n); (1/2)*(1-log(2)) = Sum_{n>=0} (-1)^n/a(n). [Jolley eq 236 and 237]
Sum_{n>=0} x^n/a(n) = ((1+x)/sqrt(x)*log((1+sqrt x)/(1-sqrt x)) + 2*log(1-x)-2)/(4x). [Jolley eq 280 for 0
Sum_{n>=0} (-x)^n/a(n) = (1-log(1+x) -(1-x)/sqrt(x)*arctan(x))/(2x). [Jolley eq 281 for 0
a(n) = 6*A000447(n+1). - Lekraj Beedassy, Apr 18 2003
G.f.: 6*(1 + 6*x + x^2) / (x-1)^4 . - R. J. Mathar, Jun 09 2013
a(0)=6, a(1)=60, a(2)=210, a(3)=504, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 08 2013
a(n) = 2*A035328(n+1). - J. M. Bergot, Jan 02 2015

A097321 a(n) = (3*n-1) * 3*n * (3*n+1).

Original entry on oeis.org

24, 210, 720, 1716, 3360, 5814, 9240, 13800, 19656, 26970, 35904, 46620, 59280, 74046, 91080, 110544, 132600, 157410, 185136, 215940, 249984, 287430, 328440, 373176, 421800, 474474, 531360, 592620, 658416, 728910, 804264, 884640, 970200, 1061106, 1157520
Offset: 1

Author

Ralf Stephan, Aug 07 2004

Keywords

Crossrefs

Programs

Formula

G.f.: 6x * (4x^2 + 19x + 4) / (1-x)^4.
Sum_{n>=1} 1/a(n) = (log(3) - 1)/2. - Amiram Eldar, Jul 04 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/2 - 2*log(2)/3. - Amiram Eldar, May 15 2022
E.g.f.: 3*exp(x)*x*(8 + 27*x + 9*x^2). - Stefano Spezia, Feb 20 2025

A084660 Decimal expansion of solution of area bisectors problem.

Original entry on oeis.org

0, 1, 9, 8, 6, 0, 3, 8, 5, 4, 1, 9, 9, 5, 8, 9, 8, 2, 0, 6, 2, 9, 2, 4, 0, 9, 1, 0, 9, 3, 6, 3, 2, 4, 2, 6, 0, 5, 6, 6, 2, 5, 1, 0, 0, 7, 7, 0, 1, 9, 1, 4, 4, 0, 5, 9, 0, 5, 1, 0, 0, 0, 7, 1, 2, 0, 0, 4, 5, 2, 1, 6, 4, 7, 7, 2, 7, 1, 0, 3, 6, 7, 0, 4, 3, 9, 7, 4, 9, 5, 2, 4, 7, 3, 1, 4, 0, 1, 5, 6, 5, 6, 5
Offset: 0

Author

Zak Seidov, Jun 28 2003

Keywords

Examples

			0.0198603854199589820629240910936324260566251...
		

Programs

  • Magma
    SetDefaultRealField(RealField(119)); Log(8/Exp(2))/4 // G. C. Greubel, Mar 22 2023
    
  • Mathematica
    Join[{0}, RealDigits[N[3/4*Log[2]-1/2, 108]][[1]]] (* Georg Fischer, Jul 15 2021 *)
  • PARI
    3*log(2)/4-1/2 \\ Charles R Greathouse IV, Apr 13 2020
    
  • SageMath
    numerical_approx(log(8/exp(2))/4, digits=119) # G. C. Greubel, Mar 22 2023

Formula

Equals (3*log(2) - 2)/4.
Sum_{i>0} 1/((4i-1)*4i*(4i+1)) = Sum_{i>0} 1/A069140(i). - Henry Bottomley, Jul 09 2003

Extensions

a(100) corrected by Georg Fischer, Jul 15 2021
Showing 1-3 of 3 results.