cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A069072 a(n) = (2n+1)*(2n+2)*(2n+3).

Original entry on oeis.org

6, 60, 210, 504, 990, 1716, 2730, 4080, 5814, 7980, 10626, 13800, 17550, 21924, 26970, 32736, 39270, 46620, 54834, 63960, 74046, 85140, 97290, 110544, 124950, 140556, 157410, 175560, 195054, 215940, 238266, 262080, 287430, 314364, 342930
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Terms are areas of primitive Pythagorean triangles whose odd sides differ by 2; e.g., the triangle with sides 8,15,17 has area 60. - Lekraj Beedassy, Apr 18 2003
Using (n, n+1), (n, n+2), and (n+1, n+2) to generate three unreduced Pythagorean triangles gives a sum of the areas for all three to be (2*n+1)*(2*n+2)*(2*n+3), which are three consecutive numbers. - J. M. Bergot, Aug 22 2011

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 190.
  • Jolley, Summation of Series, Oxford (1961).
  • Konrad Knopp, Theory and application of infinite series, Dover, p. 269.

Crossrefs

Programs

  • Mathematica
    Array[Times@@(2#+{1,2,3})&,40,0] (* or *) LinearRecurrence[{4,-6,4,-1},{6,60,210,504},40] (* Harvey P. Dale, Dec 08 2013 *)
  • PARI
    a(n)=(2*n+1)*(2*n+2)*(2*n+3) \\ Charles R Greathouse IV, Oct 07 2015

Formula

log(2) - 1/2 = Sum_{n>=0} 1/a(n); (1/2)*(1-log(2)) = Sum_{n>=0} (-1)^n/a(n). [Jolley eq 236 and 237]
Sum_{n>=0} x^n/a(n) = ((1+x)/sqrt(x)*log((1+sqrt x)/(1-sqrt x)) + 2*log(1-x)-2)/(4x). [Jolley eq 280 for 0
Sum_{n>=0} (-x)^n/a(n) = (1-log(1+x) -(1-x)/sqrt(x)*arctan(x))/(2x). [Jolley eq 281 for 0
a(n) = 6*A000447(n+1). - Lekraj Beedassy, Apr 18 2003
G.f.: 6*(1 + 6*x + x^2) / (x-1)^4 . - R. J. Mathar, Jun 09 2013
a(0)=6, a(1)=60, a(2)=210, a(3)=504, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 08 2013
a(n) = 2*A035328(n+1). - J. M. Bergot, Jan 02 2015

A054776 a(n) = 3*n*(3*n-1)*(3*n-2).

Original entry on oeis.org

0, 6, 120, 504, 1320, 2730, 4896, 7980, 12144, 17550, 24360, 32736, 42840, 54834, 68880, 85140, 103776, 124950, 148824, 175560, 205320, 238266, 274560, 314364, 357840, 405150, 456456, 511920, 571704, 635970, 704880, 778596, 857280, 941094
Offset: 0

Author

Henry Bottomley, May 19 2000

Keywords

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 46.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 268.

Crossrefs

Programs

Formula

a(n) = A007531(3n-2) = 6*A006566(n).
Sum_{n>=1} 1/a(n) = Pi*sqrt(3)/12 - log(3)/4 = 0.178796768891527... [Jolley eq. 250]. - Benoit Cloitre, Apr 05 2002
G.f.: 6*x*(1+16*x+10*x^2)/(1-x)^4.
E.g.f.: 3*exp(x)*x*(2 + 18x + 9x^2). - Indranil Ghosh, Apr 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/3 - Pi/(6*sqrt(3)). - Amiram Eldar, Mar 08 2022

A069140 a(n) = (4n-1)*4n*(4n+1).

Original entry on oeis.org

0, 60, 504, 1716, 4080, 7980, 13800, 21924, 32736, 46620, 63960, 85140, 110544, 140556, 175560, 215940, 262080, 314364, 373176, 438900, 511920, 592620, 681384, 778596, 884640, 999900, 1124760, 1259604, 1404816, 1560780, 1727880, 1906500
Offset: 0

Author

Henry Bottomley, Apr 08 2002

Keywords

Examples

			a(10) = 39*40*41 = 63960.
		

Crossrefs

Programs

  • Mathematica
    Table[64n^3-4n,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,60,504,1716},40] (* Harvey P. Dale, Dec 24 2012 *)
  • PARI
    a(n)=(4*n-1)*4*n*(4*n+1) \\ Charles R Greathouse IV, Oct 07 2015

Formula

Sum_{i>0} 1/a(i) = log(2)*3/4 - 1/2 = 0.019860..., which is the ratio of the area of the deltoid envelope formed by area bisectors of a triangle to the area of the triangle.
a(n) = 64n^3 - 4n = A007531(4n) = A069072(2n-1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 24 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/2 - log(2)/4 + log(tan(Pi/8))/(2*sqrt(2)). Amiram Eldar, Mar 20 2022

A228889 a(n) = 3*n*(3*n + 1)*(3*n + 2).

Original entry on oeis.org

60, 336, 990, 2184, 4080, 6840, 10626, 15600, 21924, 29760, 39270, 50616, 63960, 79464, 97290, 117600, 140556, 166320, 195054, 226920, 262080, 300696, 342930, 388944, 438900, 492960, 551286, 614040, 681384, 753480, 830490, 912576, 999900, 1092624, 1190910
Offset: 1

Author

Peter Bala, Sep 09 2013

Keywords

Comments

Related sequences are A054776 and A097321.

Crossrefs

Programs

  • Magma
    [3*n*(3*n+1)*(3*n+2): n in [1..40]]; // Vincenzo Librandi, Sep 10 2013
  • Maple
    seq(3*n*(3*n+1)*(3*n+2), n = 1..35);
  • Mathematica
    CoefficientList[Series[6 (10 + 16 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 10 2013 *)
    Table[Times@@(3n+{0,1,2}),{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{60,336,990,2184},40] (* Harvey P. Dale, Dec 20 2023 *)

Formula

a(n) = 3*n*(3*n + 1)*(3*n + 2) = 6*binomial(3*n + 2,3) = 6*A228888(n).
a(-n) = - A054776(n).
G.f.: 6*x*(10 + 16*x + x^2)/(1 - x)^4 = 60*x + 336*x^2 + 990*x^3 + ....
Sum {n >= 1} 1/a(n) = 3/4 - log(3)/4 - 1/12*sqrt(3)*Pi;
Sum {n >= 1} (-1)^n/a(n) = 3/4 - 2/3*log(2) - 1/18*sqrt(3)*Pi.

A157024 a(0)=1, a(n) = (3n-1)*3n*(3n+1)/2 for n>0.

Original entry on oeis.org

1, 12, 105, 360, 858, 1680, 2907, 4620, 6900, 9828, 13485, 17952, 23310, 29640, 37023, 45540, 55272, 66300, 78705, 92568, 107970, 124992, 143715, 164220, 186588, 210900, 237237, 265680, 296310, 329208, 364455, 402132, 442320, 485100, 530553, 578760, 629802
Offset: 0

Author

Jaume Oliver Lafont, Feb 21 2009

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,((3n)(3n-1)(3n+1))/2}; NestList[nxt,{0,1},40][[All,2]]/.(0->Nothing) (* Harvey P. Dale, Sep 24 2016 *)

Formula

Sum_{n>=0} 1/a(n) = log(3).
G.f.: (1+8x+63x^2+8x^3+x^4)/(1-x)^4.
a(n) = A027480(3n-1), n>0. - R. J. Mathar, Apr 07 2009
Sum_{n>=0} (-1)^n/a(n) = 4*log(2)/3. - Amiram Eldar, Feb 27 2022
Showing 1-5 of 5 results.