A069072 a(n) = (2n+1)*(2n+2)*(2n+3).
6, 60, 210, 504, 990, 1716, 2730, 4080, 5814, 7980, 10626, 13800, 17550, 21924, 26970, 32736, 39270, 46620, 54834, 63960, 74046, 85140, 97290, 110544, 124950, 140556, 157410, 175560, 195054, 215940, 238266, 262080, 287430, 314364, 342930
Offset: 0
References
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 190.
- Jolley, Summation of Series, Oxford (1961).
- Konrad Knopp, Theory and application of infinite series, Dover, p. 269.
Links
- M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original german edition of "Theory and Application of Infinite Series")
- S. Ramanujan, Notebook entry
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
Array[Times@@(2#+{1,2,3})&,40,0] (* or *) LinearRecurrence[{4,-6,4,-1},{6,60,210,504},40] (* Harvey P. Dale, Dec 08 2013 *)
-
PARI
a(n)=(2*n+1)*(2*n+2)*(2*n+3) \\ Charles R Greathouse IV, Oct 07 2015
Formula
log(2) - 1/2 = Sum_{n>=0} 1/a(n); (1/2)*(1-log(2)) = Sum_{n>=0} (-1)^n/a(n). [Jolley eq 236 and 237]
Sum_{n>=0} x^n/a(n) = ((1+x)/sqrt(x)*log((1+sqrt x)/(1-sqrt x)) + 2*log(1-x)-2)/(4x). [Jolley eq 280 for 0
Sum_{n>=0} (-x)^n/a(n) = (1-log(1+x) -(1-x)/sqrt(x)*arctan(x))/(2x). [Jolley eq 281 for 0
a(n) = 6*A000447(n+1). - Lekraj Beedassy, Apr 18 2003
G.f.: 6*(1 + 6*x + x^2) / (x-1)^4 . - R. J. Mathar, Jun 09 2013
a(0)=6, a(1)=60, a(2)=210, a(3)=504, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 08 2013
a(n) = 2*A035328(n+1). - J. M. Bergot, Jan 02 2015
A054776 a(n) = 3*n*(3*n-1)*(3*n-2).
0, 6, 120, 504, 1320, 2730, 4896, 7980, 12144, 17550, 24360, 32736, 42840, 54834, 68880, 85140, 103776, 124950, 148824, 175560, 205320, 238266, 274560, 314364, 357840, 405150, 456456, 511920, 571704, 635970, 704880, 778596, 857280, 941094
Offset: 0
References
- L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 46.
- Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 268.
Links
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original german edition of "Theory and Application of Infinite Series")
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
Programs
-
Maple
A054776:=n->3*n*(3*n-1)*(3*n-2): seq(A054776(n), n=0..50); # Wesley Ivan Hurt, Apr 14 2017
-
PARI
a(n)=3*n*(3*n-1)*(3*n-2)
Formula
Sum_{n>=1} 1/a(n) = Pi*sqrt(3)/12 - log(3)/4 = 0.178796768891527... [Jolley eq. 250]. - Benoit Cloitre, Apr 05 2002
G.f.: 6*x*(1+16*x+10*x^2)/(1-x)^4.
E.g.f.: 3*exp(x)*x*(2 + 18x + 9x^2). - Indranil Ghosh, Apr 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/3 - Pi/(6*sqrt(3)). - Amiram Eldar, Mar 08 2022
A069140 a(n) = (4n-1)*4n*(4n+1).
0, 60, 504, 1716, 4080, 7980, 13800, 21924, 32736, 46620, 63960, 85140, 110544, 140556, 175560, 215940, 262080, 314364, 373176, 438900, 511920, 592620, 681384, 778596, 884640, 999900, 1124760, 1259604, 1404816, 1560780, 1727880, 1906500
Offset: 0
Examples
a(10) = 39*40*41 = 63960.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Henry Bottomley, Medians and area bisectors of a triangle.
- S. Ramanujan, Notebook entry.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
Table[64n^3-4n,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,60,504,1716},40] (* Harvey P. Dale, Dec 24 2012 *)
-
PARI
a(n)=(4*n-1)*4*n*(4*n+1) \\ Charles R Greathouse IV, Oct 07 2015
Formula
Sum_{i>0} 1/a(i) = log(2)*3/4 - 1/2 = 0.019860..., which is the ratio of the area of the deltoid envelope formed by area bisectors of a triangle to the area of the triangle.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 24 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/2 - log(2)/4 + log(tan(Pi/8))/(2*sqrt(2)). Amiram Eldar, Mar 20 2022
A228889 a(n) = 3*n*(3*n + 1)*(3*n + 2).
60, 336, 990, 2184, 4080, 6840, 10626, 15600, 21924, 29760, 39270, 50616, 63960, 79464, 97290, 117600, 140556, 166320, 195054, 226920, 262080, 300696, 342930, 388944, 438900, 492960, 551286, 614040, 681384, 753480, 830490, 912576, 999900, 1092624, 1190910
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[3*n*(3*n+1)*(3*n+2): n in [1..40]]; // Vincenzo Librandi, Sep 10 2013
-
Maple
seq(3*n*(3*n+1)*(3*n+2), n = 1..35);
-
Mathematica
CoefficientList[Series[6 (10 + 16 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 10 2013 *) Table[Times@@(3n+{0,1,2}),{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{60,336,990,2184},40] (* Harvey P. Dale, Dec 20 2023 *)
A157024 a(0)=1, a(n) = (3n-1)*3n*(3n+1)/2 for n>0.
1, 12, 105, 360, 858, 1680, 2907, 4620, 6900, 9828, 13485, 17952, 23310, 29640, 37023, 45540, 55272, 66300, 78705, 92568, 107970, 124992, 143715, 164220, 186588, 210900, 237237, 265680, 296310, 329208, 364455, 402132, 442320, 485100, 530553, 578760, 629802
Offset: 0
Keywords
Programs
-
Mathematica
nxt[{n_,a_}]:={n+1,((3n)(3n-1)(3n+1))/2}; NestList[nxt,{0,1},40][[All,2]]/.(0->Nothing) (* Harvey P. Dale, Sep 24 2016 *)
Formula
Sum_{n>=0} 1/a(n) = log(3).
G.f.: (1+8x+63x^2+8x^3+x^4)/(1-x)^4.
a(n) = A027480(3n-1), n>0. - R. J. Mathar, Apr 07 2009
Sum_{n>=0} (-1)^n/a(n) = 4*log(2)/3. - Amiram Eldar, Feb 27 2022
Comments