cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006566 Dodecahedral numbers: a(n) = n*(3*n - 1)*(3*n - 2)/2.

Original entry on oeis.org

0, 1, 20, 84, 220, 455, 816, 1330, 2024, 2925, 4060, 5456, 7140, 9139, 11480, 14190, 17296, 20825, 24804, 29260, 34220, 39711, 45760, 52394, 59640, 67525, 76076, 85320, 95284, 105995, 117480, 129766, 142880, 156849, 171700, 187460, 204156
Offset: 0

Views

Author

Keywords

Comments

Schlaefli symbol for this polyhedron: {5,3}.
A093485 = first differences; A124388 = second differences; third differences = 27. - Reinhard Zumkeller, Oct 30 2006
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010
From Peter Bala, Sep 09 2013: (Start)
a(n) = binomial(3*n,3). Two related sequences are binomial(3*n+1,3) (A228887) and binomial(3*n+2,3) (A228888). The o.g.f.'s for these three sequences are rational functions whose numerator polynomials are obtained from the fourth row [1, 4, 10, 16, 19, 16, 10, 4, 1] of the triangle of trinomial coefficients A027907 by taking every third term:
Sum_{n >= 1} binomial(3*n,3)*x^n = (x + 16*x^2 + 10*x^3)/(1-x)^4;
Sum_{n >= 1} binomial(3*n+1,3)*x^n = (4*x + 19*x^2 + 4*x^3)/(1-x)^4;
Sum_{n >= 1} binomial(3*n+2,3)*x^n = (10*x + 16*x^2 + x^3)/(1-x)^4. (End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000292 (tetrahedral numbers), A000578 (cubes), A005900 (octahedral numbers), A006564 (icosahedral numbers).

Programs

  • Haskell
    a006566 n = n * (3 * n - 1) * (3 * n - 2) `div` 2
    a006566_list = scanl (+) 0 a093485_list  -- Reinhard Zumkeller, Jun 16 2013
    
  • Magma
    [n*(3*n-1)*(3*n-2)/2: n in [0..40]]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    A006566:=(1+16*z+10*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[n(3n-1)(3n-2)/2,{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,20,84},40] (* Harvey P. Dale, Jul 24 2013 *)
    CoefficientList[Series[x (1 + 16 x + 10 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2015 *)
  • PARI
    a(n)=n*(3*n-1)*(3*n-2)/2
    

Formula

G.f.: x(1 + 16x + 10x^2)/(1 - x)^4.
a(n) = A000292(3n-3) = A054776(n)/6 = n*A060544(n).
a(n) = C(n+2,3) + 16 C(n+1,3) + 10 C(n,3).
a(0)=0, a(1)=1, a(2)=20, a(3)=84, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jul 24 2013
a(n) = binomial(3*n,3). a(-n) = - A228888(n). Sum_{n>=1} 1/a(n) = 1/2*( sqrt(3)*Pi - 3*log(3) ). Sum_{n>=1} (-1)^n/a(n) = 1/3*sqrt(3)*Pi - 4*log(2). - Peter Bala, Sep 09 2013
a(n) = A006564(n) + A035006(n). - Peter M. Chema, May 04 2016
E.g.f.: x*(2 + 18*x + 9*x^2)*exp(x)/2. - Ilya Gutkovskiy, May 04 2016
From Amiram Eldar, Jan 09 2024: (Start)
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi - 3*log(3))/2 (A295421).
Sum_{n>=1} (-1)^(n+1)/a(n) = (12*log(2) - sqrt(3)*Pi)/3. (End)

Extensions

More terms from Henry Bottomley, Nov 23 2001

A268685 a(n) = 3*(n + 1)*(n + 2)*(3*n + 1)*(3*n + 4)/4.

Original entry on oeis.org

6, 126, 630, 1950, 4680, 9576, 17556, 29700, 47250, 71610, 104346, 147186, 202020, 270900, 356040, 459816, 584766, 733590, 909150, 1114470, 1352736, 1627296, 1941660, 2299500, 2704650, 3161106, 3673026, 4244730, 4880700, 5585580, 6364176, 7221456, 8162550
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 11 2016

Keywords

Comments

a(n) is the total volume of the family of (n+1) rectangular prisms, where the k-th prism has dimensions (3k) X (3k-1) X (3k-2). - Wesley Ivan Hurt, Oct 02 2018

Examples

			a(0) = 1*2*3 = 6;
a(1) = 1*2*3 + 4*5*6 = 126;
a(2) = 1*2*3 + 4*5*6 + 7*8*9 = 630;
a(3) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 = 1950;
a(4) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 = 4680;
a(5) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 = 9576, etc.
		

Crossrefs

Trisection of A319014 and A319867.

Programs

  • Magma
    [3*(n + 1)*(n + 2)*(3*n + 1)*(3*n + 4)/4: n in [0..40]]; // Vincenzo Librandi, Feb 11 2016
    
  • Mathematica
    Table[3 (n + 1) (n + 2) (3 n + 1) ((3 n + 4)/4), {n, 0, 32}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {6, 126, 630, 1950, 4680}, 32]
    CoefficientList[Series[6 (10 x^2 + 16 x + 1) / (1 - x)^5, {x, 0, 33}], x] (* Vincenzo Librandi, Feb 11 2016 *)
  • PARI
    a(n) = 3*(n+1)*(n+2)*(3*n+1)*(3*n+4)/4 \\ Felix Fröhlich, Jun 07 2016

Formula

G.f.: -6*(10*x^2 + 16*x + 1)/(x - 1)^5.
a(n) = Sum_{k = 0..n} (3*k + 1)(3*k + 2)(3*k + 3).
Sum {n>=0} 1/a(n) = 2*(sqrt(3)*Pi + 9*log(3) - 14)/15 = 0.1771878254287521...
a(n) mod 6 = 0.
a(n) = 6*A116689(n+1). - R. J. Mathar, Jun 07 2016
E.g.f.: 3*exp(x)*(8 + 160*x +256*x^2 + 96*x^3 + 9*x^4)/4. - Stefano Spezia, Apr 18 2023
Sum_{n>=0} (-1)^n/a(n) = 28/15 - 8*Pi/(15*sqrt(3)) - 16*log(2)/15. - Amiram Eldar, Apr 30 2023

A228889 a(n) = 3*n*(3*n + 1)*(3*n + 2).

Original entry on oeis.org

60, 336, 990, 2184, 4080, 6840, 10626, 15600, 21924, 29760, 39270, 50616, 63960, 79464, 97290, 117600, 140556, 166320, 195054, 226920, 262080, 300696, 342930, 388944, 438900, 492960, 551286, 614040, 681384, 753480, 830490, 912576, 999900, 1092624, 1190910
Offset: 1

Views

Author

Peter Bala, Sep 09 2013

Keywords

Comments

Related sequences are A054776 and A097321.

Crossrefs

Programs

  • Magma
    [3*n*(3*n+1)*(3*n+2): n in [1..40]]; // Vincenzo Librandi, Sep 10 2013
  • Maple
    seq(3*n*(3*n+1)*(3*n+2), n = 1..35);
  • Mathematica
    CoefficientList[Series[6 (10 + 16 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 10 2013 *)
    Table[Times@@(3n+{0,1,2}),{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{60,336,990,2184},40] (* Harvey P. Dale, Dec 20 2023 *)

Formula

a(n) = 3*n*(3*n + 1)*(3*n + 2) = 6*binomial(3*n + 2,3) = 6*A228888(n).
a(-n) = - A054776(n).
G.f.: 6*x*(10 + 16*x + x^2)/(1 - x)^4 = 60*x + 336*x^2 + 990*x^3 + ....
Sum {n >= 1} 1/a(n) = 3/4 - log(3)/4 - 1/12*sqrt(3)*Pi;
Sum {n >= 1} (-1)^n/a(n) = 3/4 - 2/3*log(2) - 1/18*sqrt(3)*Pi.

A119832 Bi-diagonal inverse of (3n)!/(3k)!.

Original entry on oeis.org

1, -6, 1, 0, -120, 1, 0, 0, -504, 1, 0, 0, 0, -1320, 1, 0, 0, 0, 0, -2730, 1, 0, 0, 0, 0, 0, -4896, 1, 0, 0, 0, 0, 0, 0, -7980, 1, 0, 0, 0, 0, 0, 0, 0, -12144, 1, 0, 0, 0, 0, 0, 0, 0, 0, -17550, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -24360, 1
Offset: 0

Views

Author

Paul Barry, May 25 2006

Keywords

Comments

Row sums are 1-A054776(n). Inverse of A119831.

Examples

			Triangle begins
1,
-6, 1,
0, -120, 1,
0, 0, -504, 1,
0, 0, 0, -1320, 1,
0, 0, 0, 0, -2730, 1,
0, 0, 0, 0, 0, -4896, 1,
0, 0, 0, 0, 0, 0, -7980, 1,
0, 0, 0, 0, 0, 0, 0, -12144, 1,
0, 0, 0, 0, 0, 0, 0, 0, -17550, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, -24360, 1
		

Formula

Column k has g.f. x^k(1-b(k+1)x) where b(n)=3n(3n-2)(3n-1)=A054776(n).
Showing 1-4 of 4 results.