cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A088529 Numerator of Bigomega(n)/Omega(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 2, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, 3, 1, 1, 1, 3, 1, 3, 3, 2
Offset: 2

Views

Author

Cino Hilliard, Nov 16 2003

Keywords

Examples

			bigomega(24) / omega(24) = 4/2 = 2, so a(24) = 2.
		

References

  • H. Z. Cao, On the average of exponents, Northeast. Math. J., Vol. 10 (1994), pp. 291-296.

Crossrefs

Cf. A001221, A001222, A070012, A070013, A070014, A088530 (gives the denominator).

Programs

  • Mathematica
    Table[Numerator[PrimeOmega[n]/PrimeNu[n]], {n, 2, 100}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    for(x=2,100,y=bigomega(x)/omega(x);print1(numerator(y)","))
    
  • Python
    from sympy import primefactors, Integer
    def bigomega(n): return 0 if n==1 else bigomega(Integer(n)/primefactors(n)[0]) + 1
    def omega(n): return Integer(len(primefactors(n)))
    def a(n): return (bigomega(n)/omega(n)).numerator
    print([a(n) for n in range(2, 51)]) # Indranil Ghosh, Jul 13 2017

Formula

Let B = number of prime divisors of n with multiplicity, O = number of distinct prime divisors of n. Then a(n) = numerator of B/O.
a(n) = A136565(n) = A181591(n) for n: 2 <= n < 24. - Reinhard Zumkeller, Nov 01 2010
Sum_{k=2..n} a(k)/A088530(k) ~ n + O(n/log(log(n))) (Duncan, 1970). - Amiram Eldar, Oct 14 2022
Sum_{k=2..n} a(k)/A088530(k) = n + c_1 * n/log(log(n)) + c_2 * n/log(log(n))^2 + O(n/log(log(n))^3), where c_1 = A136141 and c_2 = A272531 (Cao, 1994; Finch, 2020). - Amiram Eldar, Dec 15 2022

A088530 Denominator of bigomega(n)/omega(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1
Offset: 2

Views

Author

Cino Hilliard, Nov 16 2003

Keywords

Comments

a(n) is the denominator of A022559(n)/A000720(n). - Robert Israel, Jan 08 2024

Examples

			bigomega(24) / omega(24) = 4/2 = 2/1, so a(24) = 1.
		

Crossrefs

Cf. A001221, A001222, A000720, A022559, A070012, A070013, A070014, A088529 (gives the numerator).

Programs

  • Maple
    N:= 100:
    W:= ListTools:-PartialSums(map(numtheory:-bigomega,[$1..N])):
    seq(denom(W[i]/numtheory:-pi(i)),i=2..N); # Robert Israel, Jan 08 2024
  • Mathematica
    Table[Denominator[PrimeOmega[n]/PrimeNu[n]],{n,2,100}] (* Harvey P. Dale, Mar 22 2012 *)
  • PARI
    for(x=2,100,y=bigomega(x)/omega(x);print1(denominator(y)","))
    
  • Python
    from sympy import primefactors, Integer
    def bigomega(n): return 0 if n==1 else bigomega(Integer(n)/primefactors(n)[0]) + 1
    def omega(n): return Integer(len(primefactors(n)))
    def a(n): return (bigomega(n)/omega(n)).denominator
    print([a(n) for n in range(2, 51)]) # Indranil Ghosh, Jul 13 2017

Formula

Let B = number of prime divisors of n with multiplicity, O = number of distinct prime divisors of n. Then a(n) = denominator of B/O.

A070011 Numbers n such that number of prime factors divided by the number of distinct prime factors is not an integer.

Original entry on oeis.org

12, 18, 20, 28, 44, 45, 48, 50, 52, 60, 63, 68, 72, 75, 76, 80, 84, 90, 92, 98, 99, 108, 112, 116, 117, 120, 124, 126, 132, 140, 147, 148, 150, 153, 156, 162, 164, 168, 171, 172, 175, 176, 180, 188, 192, 198, 200, 204, 207, 208, 212, 220, 228, 234, 236, 242
Offset: 1

Views

Author

Rick L. Shepherd, Apr 11 2002

Keywords

Examples

			45 is a term because 45 = 3^2 * 5 gives bigomega(45)=3 and omega(45)=2 and 3/2 is not an integer.
		

Crossrefs

Cf. A067340 (complement), A070012 (floor(bigomega(n)/omega(n))).
Different from A084679.

Programs

  • Mathematica
    Select[Range[2,1000],!IntegerQ[PrimeOmega[#]/PrimeNu[#]]&] (* Enrique Pérez Herrero, Dec 20 2012 *)
  • PARI
    v=[]; for(n=2,300,if(denominator(bigomega(n)/omega(n))<>1,v=concat(v,n))); v
    
  • PARI
    is(n)=my(f=factor(n)[,2]); n>9 && vecsum(f)%#f!=0 \\ Charles R Greathouse IV, Oct 16 2015

Formula

A001222(n)/A001221(n) (i.e. bigomega(n)/omega(n)) is not an integer.

A070013 Number of prime factors of n divided by the number of n's distinct prime factors (rounded).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1
Offset: 2

Views

Author

Rick L. Shepherd, Apr 11 2002

Keywords

Comments

a(n) is the rounded average of the exponents in the prime factorization of n.

Examples

			a(12)=2 because 12=2^2 * 3^1 and round(bigomega(12)/omega(12))=round((2+1)/2)=2.
a(36)=2 because 36=2^2 * 3^2 and round(bigomega(36)/omega(36))=round((2+2)/2)=2.
a(60)=1 because 60=2^2 * 3^1 * 5^1 and round(bigomega(60)/omega(60))= round((2+1+1)/3)=1.
36 is in A067340. 12 and 60 are in A070011.
		

Crossrefs

Cf. A001221 (omega(n)), A001222 (bigomega(n)), A067340 (ratio is an integer before rounding), A070011 (ratio is not an integer), A070012 (floor of ratio), A070014 (ceiling of ratio), A046660 (bigomega(n)-omega(n)).

Programs

  • Mathematica
    Table[Round[PrimeOmega[n]/PrimeNu[n]], {n, 2, 50}] (* G. C. Greubel, May 08 2017 *)
  • PARI
    v=[]; for(n=2,150,v=concat(v,round(bigomega(n)/omega(n)))); v

Formula

a(n) = round(bigomega(n)/omega(n)) for n>=2.

A070014 Ceiling of number of prime factors of n divided by the number of n's distinct prime factors.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1
Offset: 2

Views

Author

Rick L. Shepherd, Apr 11 2002

Keywords

Comments

a(n) is the ceiling of the average of the exponents in the prime factorization of n.

Examples

			a(12) = 2 because 12 = 2^2 * 3^1 and ceiling(bigomega(12)/omega(12)) = ceiling((2+1)/2) = 2. a(36) = 2 because 36 = 2^2 * 3^2 and ceiling(bigomega(36)/omega(36)) = ceiling((2+2)/2) = 2. a(60) = 2 because 60 = 2^2 * 3^1 * 5^1 and ceiling(bigomega(60)/omega(60)) = ceiling((2+1+1)/3) = 2. 36 is in A067340. 12 and 60 are in A070011.
		

Crossrefs

Cf. A001221 (omega(n)), A001222 (bigomega(n)), A067340 (ratio is an integer before ceil is applied), A070011 (ratio is not an integer), A070012 (floor of ratio), A070013 (ratio rounded), A046660 (bigomega(n)-omega(n)), A088529, A088530.

Programs

  • Mathematica
    Table[Ceiling[PrimeOmega[n]/PrimeNu[n]], {n, 2, 106}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    v=[]; for(n=2,150,v=concat(v,ceil(bigomega(n)/omega(n)))); v
    
  • Python
    from sympy import primefactors, ceiling
    def bigomega(n): return 0 if n==1 else bigomega(n//primefactors(n)[0]) + 1
    def omega(n): return len(primefactors(n))
    def a(n): return ceiling(bigomega(n)/omega(n))
    print([a(n) for n in range(2, 51)]) # Indranil Ghosh, Jul 13 2017
  • Scheme
    (define (A070014 n) (let ((a (A001222 n)) (b (A001221 n))) (if (zero? (modulo a b)) (/ a b) (+ 1 (/ (- a (modulo a b)) b))))) ;; Antti Karttunen, Jul 12 2017
    

Formula

a(n) = ceiling(bigomega(n)/omega(n)) for n>=2.

A289621 Compound filter (omega & bigomega): a(1) = 0, for n > 1, a(n) = P(A001221(n), A001222(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 4, 2, 5, 1, 8, 1, 5, 5, 7, 1, 8, 1, 8, 5, 5, 1, 12, 2, 5, 4, 8, 1, 13, 1, 11, 5, 5, 5, 12, 1, 5, 5, 12, 1, 13, 1, 8, 8, 5, 1, 17, 2, 8, 5, 8, 1, 12, 5, 12, 5, 5, 1, 18, 1, 5, 8, 16, 5, 13, 1, 8, 5, 13, 1, 17, 1, 5, 8, 8, 5, 13, 1, 17, 7, 5, 1, 18, 5, 5, 5, 12, 1, 18, 5, 8, 5, 5, 5, 23, 1, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Jul 16 2017

Keywords

Crossrefs

Cf. A001221, A001222, A008966, A046660, A070012, A070013, A070014, A088529, A088530, A181591 (sequences with matching equivalence classes).

Programs

  • PARI
    A289621(n) = if(1==n,0,(1/2)*(2 + ((omega(n)+bigomega(n))^2) - omega(n) - 3*bigomega(n)));
    
  • Scheme
    (define (A289621 n) (if (= 1 n) 0 (* (/ 1 2) (+ (expt (+ (A001221 n) (A001222 n)) 2) (- (A001221 n)) (- (* 3 (A001222 n))) 2))))

Formula

a(1) = 0, for n > 1, a(n) = (1/2)*(2 + ((A001221(n)+A001222(n))^2) - A001221(n) - 3*A001222(n)).

A382266 Numerator of the harmonic mean of the exponents in the prime factorization of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 4, 1, 4, 1, 4, 1, 1, 1, 3, 2, 1, 3, 4, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 4, 1, 1, 8, 2, 4, 1, 4, 1, 3, 1, 3, 1, 1, 1, 6, 1, 1, 4, 6, 1, 1, 1, 4, 1, 1, 1, 12, 1, 1, 4, 4, 1, 1, 1, 8, 4, 1, 1, 6, 1, 1, 1, 3, 1, 6, 1, 4, 1, 1, 1, 5, 1, 4, 4, 2
Offset: 2

Views

Author

Ilya Gutkovskiy, Mar 19 2025

Keywords

Examples

			1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4/3, 1, 1, 1, 4, 1, 4/3, 1, 4/3, 1, 1, 1, 3/2, 2, 1, 3, 4/3, ...
		

Crossrefs

Cf. A070012, A088529, A250096, A382267 (denominators).

Programs

  • Maple
    a:= n-> (l-> numer(nops(l)/add(1/i[2], i=l)))(ifactors(n)[2]):
    seq(a(n), n=2..100);  # Alois P. Heinz, Mar 21 2025
  • Mathematica
    Table[HarmonicMean[(#[[2]] & /@ FactorInteger[n])], {n, 2, 100}] // Numerator

A382267 Denominator of the harmonic mean of the exponents in the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 5, 1, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 2, 1, 5, 1, 3, 1, 1, 1, 3, 1, 3, 3, 1
Offset: 2

Views

Author

Ilya Gutkovskiy, Mar 19 2025

Keywords

Examples

			1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4/3, 1, 1, 1, 4, 1, 4/3, 1, 4/3, 1, 1, 1, 3/2, 2, 1, 3, 4/3, ...
		

Crossrefs

Cf. A070012, A088530, A250097, A382266 (numerators).

Programs

  • Maple
    a:= n-> (l-> denom(nops(l)/add(1/i[2], i=l)))(ifactors(n)[2]):
    seq(a(n), n=2..100);  # Alois P. Heinz, Mar 21 2025
  • Mathematica
    Table[HarmonicMean[(#[[2]] & /@ FactorInteger[n])], {n, 2, 100}] // Denominator
Showing 1-8 of 8 results.