A070403 a(n) = 7^n mod 9.
1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4, 1, 7, 4
Offset: 0
References
- Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 1).
Crossrefs
Programs
-
Magma
[Modexp(7, n, 9): n in [0..110]]; // Bruno Berselli, Mar 22 2016
-
Maple
A070403:=n->4-2*sqrt(3)*sin(2*(n+1)*Pi/3): seq(A070403(n), n=0..100); # Wesley Ivan Hurt, Jun 09 2016
-
Mathematica
Table[PowerMod[7, n, 9], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
-
PARI
a(n)=7^n%9 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[power_mod(7,n,9)for n in range(0,105)] # Zerinvary Lajos, Nov 03 2009
Formula
From R. J. Mathar, Feb 23 2009: (Start)
G.f.: (1+7*x+4*x^2)/((1-x)*(1+x+x^2)).
a(n+1) - a(n) = 3*A099837(n+3).
a(n) = 4 - 3*A049347(n). (End)
a(n) = a(n-3) for n>3. - G. C. Greubel, Mar 19 2016
a(n) = 4-2*sqrt(3)*sin((2*n+2)*Pi/3). - Wesley Ivan Hurt, Jun 09 2016
a(n) = A010888(7*a(n-1)). - Stefano Spezia, Mar 20 2025
Comments