cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070431 a(n) = n^2 mod 6.

Original entry on oeis.org

0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Comments

a(m*n) = a(m)*a(n) mod 6; a(3*n+k) = a(3*n-k) for k <= 3*n. - Reinhard Zumkeller, Apr 24 2009
Equivalently n^6 mod 6. - Zerinvary Lajos, Nov 06 2009
Equivalently: n^(2*m + 4) mod 6; n^(2*m + 2) mod 6. - G. C. Greubel, Apr 01 2016

Crossrefs

Programs

Formula

G.f.: -x*(1+4*x+3*x^2+4*x^3+x^4)/((x-1)*(1+x)*(1+x+x^2)*(x^2-x+1)). - R. J. Mathar, Jul 23 2009
a(n) = a(n-6). - Reinhard Zumkeller, Apr 24 2009
From G. C. Greubel, Apr 01 2016: (Start)
a(6*m) = 0.
a(2*n) = 4*A011655(n).
a(n) = (1/6)*(13 + 3*(-1)^n - 12*cos(n*Pi/3) - 4*cos(2*n*Pi/3)).
G.f.: (x +4*x^2 +3*x^3 + 4*x^4 +x^5)/(1 - x^6). (End)