A051156
a(n) = (2^p^2 - 1)/(2^p - 1) where p is the n-th prime.
Original entry on oeis.org
5, 73, 1082401, 4432676798593, 1298708349570020393652962442872833, 91355004067076339167413824240109498970069278721, 7588608256743087977590500540116743445925584618982806531428980886590618779326218241
Offset: 1
A128889
a(n) = (2^(n^2) - 1)/(2^n - 1).
Original entry on oeis.org
1, 5, 73, 4369, 1082401, 1090785345, 4432676798593, 72340172838076673, 4731607904558235517441, 1239150146850664126585242625, 1298708349570020393652962442872833, 5445847423328601499764522166702896582657, 91355004067076339167413824240109498970069278721
Offset: 1
-
a:=n->(2^(n^2)-1)/(2^n-1): seq(a(n),n=1..13);
-
f[n_] := (2^(n^2) - 1)/(2^n - 1); Array[f, 12]
F[n_] := Plus @@ Table[2^((n - i)*n), {i, 1, n}] (* Enrique Pérez Herrero, Feb 23 2009 *)
Table[(2^(n^2) - 1)/(2^n - 1), {n, 1, 20}] (* Vincenzo Librandi, Feb 18 2014 *)
-
a(n)=(2^n^2-1)/(2^n-1) \\ Charles R Greathouse IV, Feb 17 2014
A070527
Numbers k such that cyclotomic(k, 2^k) is a prime number.
Original entry on oeis.org
2, 3, 4, 7, 40, 59, 140
Offset: 1
4 is a term because cyclotomic(4,16) = 1 + 16^2 = 257 is prime.
-
Do[s=Cyclotomic[n, 2^n]; If[PrimeQ[s], Print[n]], {n, 1, 1000}]
Select[Range[150],PrimeQ[Cyclotomic[#,2^#]]&] (* Harvey P. Dale, Aug 12 2023 *)
-
isok(k) = isprime(polcyclo(k, 2^k)); \\ Michel Marcus, Dec 17 2020
Showing 1-3 of 3 results.
Comments