cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A070528 Number of divisors of 10^n-1 (999...999 with n digits).

Original entry on oeis.org

3, 6, 8, 12, 12, 64, 12, 48, 20, 48, 12, 256, 24, 48, 128, 192, 12, 640, 6, 384, 256, 288, 6, 2048, 96, 192, 96, 768, 96, 16384, 24, 6144, 128, 192, 384, 5120, 24, 24, 128, 6144, 48, 49152, 48, 4608, 1280, 192, 12, 16384, 48, 3072, 512, 1536, 48, 12288, 768
Offset: 1

Views

Author

Henry Bottomley, May 02 2002

Keywords

Examples

			a(7)=12 since the divisors of 9999999 are 1, 3, 9, 239, 717, 2151, 4649, 13947, 41841, 1111111, 3333333, 9999999.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0,#]&/@(10^Range[60]-1) (* Harvey P. Dale, Jan 14 2011 *)
    Table[DivisorSigma[0, 10^n - 1], {n, 60}] (* T. D. Noe, Aug 18 2011 *)
  • PARI
    a(n) = numdiv(10^n - 1); \\ Michel Marcus, Sep 08 2015

Formula

a(n) = A000005(A002283(n)).
a(n) = Sum_{d|n} A059892(d).
a(n) = A070529(n)*(A007949(n)+3)/(A007949(n)+1).

Extensions

Terms to a(280) in b-file from Hans Havermann, Aug 19 2011
a(281)-a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, May 04 2022

A102146 a(n) = sigma(10^n - 1), where sigma(n) is the sum of positive divisors of n.

Original entry on oeis.org

13, 156, 1520, 15912, 148512, 2042880, 14508000, 162493344, 1534205464, 16203253248, 144451398000, 2063316971520, 14903272088640, 158269280832000, 1614847741624320, 17205180696931968, 144444514193267496
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 14 2005

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1,10^Range[20]-1] (* Harvey P. Dale, Jan 05 2012 *)
  • PARI
    a(n) = sigma(10^n-1); \\ Michel Marcus, Apr 22 2017

Formula

a(n) = A000203(A002283(n)). - Ray Chandler, Apr 22 2017

A109492 Divisors of 111111.

Original entry on oeis.org

1, 3, 7, 11, 13, 21, 33, 37, 39, 77, 91, 111, 143, 231, 259, 273, 407, 429, 481, 777, 1001, 1221, 1443, 2849, 3003, 3367, 5291, 8547, 10101, 15873, 37037, 111111
Offset: 1

Views

Author

Philippe Deléham, Aug 28 2005

Keywords

Comments

Note that the smaller repunits R3=111, R4=1111, R5=11111 are semiprimes and have only 4 divisors, which is again the case for the next repunit R7=1111111. - M. F. Hasler, Oct 13 2011

Crossrefs

Cf. A199799 (totatives of 111111), A154549 (111111*n).

Programs

A103759 a(n) = sigma((10^n - 1)/9), where sigma(n) is the sum of positive divisors of n.

Original entry on oeis.org

1, 12, 152, 1224, 11424, 204288, 1116000, 12499488, 164831992, 1246404096, 11111646000, 206331697152, 1146405545280, 12174560064000, 161484774162432, 1323475438225536, 11111116476405192, 232965361825996800
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Mar 28 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1,FromDigits[PadRight[{},n,1]]],{n,20}] (* Harvey P. Dale, Jul 13 2022 *)
  • PARI
    a(n) = sigma((10^n - 1)/9); \\ Michel Marcus, Sep 08 2015

Formula

a(n) = A000203(A002275(n)). - Michel Marcus, Sep 08 2015

A197308 Divisors of 11111111.

Original entry on oeis.org

1, 11, 73, 101, 137, 803, 1111, 1507, 7373, 10001, 13837, 81103, 110011, 152207, 1010101, 11111111
Offset: 1

Views

Author

M. F. Hasler, Oct 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Divisors[11111111] (* Harvey P. Dale, Nov 12 2021 *)
  • PARI
    divisors(11111111)

A197309 Divisors of the 9th repunit 111111111.

Original entry on oeis.org

1, 3, 9, 37, 111, 333, 333667, 1001001, 3003003, 12345679, 37037037, 111111111
Offset: 1

Views

Author

M. F. Hasler, Oct 13 2011

Keywords

Comments

The prime factorization of (10^9 - 1)/9 is 3^2 * 37 * 333667. - Alonso del Arte, Apr 27 2014

Crossrefs

Programs

A197318 Divisors of the repunit 111111111111 = A002275(12).

Original entry on oeis.org

1, 3, 7, 11, 13, 21, 33, 37, 39, 77, 91, 101, 111, 143, 231, 259, 273, 303, 407, 429, 481, 707, 777, 1001, 1111, 1221, 1313, 1443, 2121, 2849, 3003, 3333, 3367, 3737, 3939, 5291, 7777, 8547, 9191, 9901, 10101, 11211, 14443, 15873, 23331, 26159, 27573, 29703
Offset: 1

Views

Author

M. F. Hasler, Oct 13 2011

Keywords

Comments

The sequence is marked "full" since even though they don't fit into the three lines above, all 128 terms are known and available in the b-file or using the given PARI code.

Crossrefs

Programs

  • Mathematica
    Divisors[111111111111] (* Paolo Xausa, Jul 04 2024 *)
  • PARI
    divisors(1e12\9)

A227815 Composite numbers n divisible by their concatenated exponents in prime factorization.

Original entry on oeis.org

4, 16, 22, 27, 33, 55, 63, 77, 143, 187, 209, 222, 248, 253, 256, 319, 341, 407, 451, 473, 484, 517, 555, 583, 649, 656, 671, 737, 777, 781, 803, 837, 869, 913, 979, 1067, 1111, 1133, 1152, 1177, 1199, 1221, 1243, 1397, 1441, 1443, 1507, 1529, 1639, 1661, 1727
Offset: 1

Views

Author

Michel Lagneau, Jul 31 2013

Keywords

Comments

The numbers 2^(2^m), m = 1, 2,... are in the sequence. A majority of semiprimes of the form 11*p where is p prime different from 11 are in the sequence. The numbers of the form p*111 = p*3*37 where p is prime different from 3 or 37 are in the sequence. In the general case, the numbers of the form n = p_1*p_2*...*p_m*R where the p_k are prime numbers and R is a repunit number (A002275) with q digits "1" and (q-m) prime divisors are in the sequence, for example the numbers of the form n = p_1*p_2*p_3*p_4*11111111 = p_1*p_2*p_3*p_4*11*73*101*137 are in the sequence if the primes p_k are different from 11, 73, 101 or 137. So, 11111111 divides n.

Examples

			248 = 2^3*31 => 31 is the concatenate exponents 3 and 1, so 31 divides 248.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 10000 do:x:=ifactors(n):y:=x[2];n1:=nops(y):s:=0:for i from 1 to n1 do:z:=y[i][2]:s:=s+z*10^(n1-i):od:if type(n,prime)=false and irem(n,s)=0 then printf(`%d, `, n):else fi:od:
  • Mathematica
    With[{predicate = And[CompositeQ[#], Divisible[#, FromDigits[Join @@ IntegerDigits@(Last /@ FactorInteger[#])]]] &},
    Select[Range[10000], predicate]] (* Sidney Cadot, Feb 19 2023 *)
  • Python
    from sympy import isprime, factorint
    def ok(n): return n > 1 and not isprime(n) and n%int("".join(str(e) for e in factorint(n).values())) == 0
    print([k for k in range(1728) if ok(k)]) # Michael S. Branicky, Feb 19 2023
Showing 1-8 of 8 results.