cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A083230 Number of repunit divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 01 2003

Keywords

Comments

Differs from A043284 (maximal run length in decimal expansion) from a(100) on. - M. F. Hasler, Oct 18 2019

Examples

			n = 110, divisors are {1, 2, 5, 10, 11, 22, 55, 110} with two repunits: 1 and 11, therefore a(110) = 2.
n = 111, divisors are {1, 3, 37, 111} with two repunits: 1 and 111, therefore a(111) = 2.
n = 111111, divisors are {1, 3, 7, 11, 13, 21, 33, 37, 39, 77, 91, 111, 143, 231, 259, 273, 407, 429, 481, 777, 1001, 1221, 1443, 2849, 3003, 3367, 5291, 8547, 10101, 15873, 37037, 111111} with four repunits: 1, 11, 111 and 111111, therefore a(111111) = 4.
		

Crossrefs

Programs

  • Mathematica
    A083230[n_]:=Count[IntegerDigits[Divisors[n]],{1..}];Array[A083230,100] (* Paolo Xausa, Sep 27 2023 *)
  • PARI
    a(n)={my(s=0, k=1); while(k<=n, if(n%k==0, s++); k=10*k+1); s} \\ Andrew Howroyd, Aug 07 2018

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A065444. - Amiram Eldar, Apr 17 2025

A109489 Value of Product[k/sd(k,2),k=1..n], where sd(k,b) is the sum of the digits of k represented in base b.

Original entry on oeis.org

1, 2, 3, 12, 30, 90, 210, 1680, 7560, 37800, 138600, 831600, 3603600, 16816800, 63063000, 1009008000, 8576568000, 77189112000, 488864376000, 4888643760000, 34220506320000, 250950379680000, 1442964683160000, 17315576197920000
Offset: 1

Views

Author

John W. Layman, Jun 29 2005

Keywords

Comments

It appears that Product[k/sd(k,b),k=1..n] is an integer for all integers n>0 and b>1. Is this known or easy to prove?
It is not true! The product is not an integer for b=2 and n=422 (it has a denominator of 5). B-file contains all terms before that. - Robert Israel, Jan 21 2018

Examples

			The base 2 representations of 1,2,3,4 are 1,10,11,100 so a(4)=(1/1)(2/1)(3/2)(4/1)=12.
		

Crossrefs

Programs

  • Maple
    P:= 1: A[1]:= P:
    for n from 2 to 100 do
      P:= P*n/convert(convert(n,base,2),`+`);
      A[n]:= P;
    od:
    seq(A[i],i=1..100); # Robert Israel, Jan 21 2018
  • PARI
    a(n) = prod(k=1, n, k/hammingweight(k)); \\ Michel Marcus, Jul 10 2014

A177769 a(n) = 111*n.

Original entry on oeis.org

111, 222, 333, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, 1554, 1665, 1776, 1887, 1998, 2109, 2220, 2331, 2442, 2553, 2664, 2775, 2886, 2997, 3108, 3219, 3330, 3441, 3552, 3663, 3774, 3885, 3996, 4107, 4218, 4329, 4440, 4551, 4662, 4773, 4884, 4995, 5106
Offset: 1

Views

Author

Paul Curtz, May 13 2010

Keywords

Comments

The reference contains also sequences A102807, A109344, A075415, and A109492.

Crossrefs

Programs

Formula

G.f.: 111*x/(x-1)^2.
a(n) = 2*a(n-1) - a(n-2).
a(n) = a(n-1) + 111.
E.g.f.: 111*x*exp(x). - Stefano Spezia, Sep 15 2023

A197308 Divisors of 11111111.

Original entry on oeis.org

1, 11, 73, 101, 137, 803, 1111, 1507, 7373, 10001, 13837, 81103, 110011, 152207, 1010101, 11111111
Offset: 1

Views

Author

M. F. Hasler, Oct 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Divisors[11111111] (* Harvey P. Dale, Nov 12 2021 *)
  • PARI
    divisors(11111111)

A197309 Divisors of the 9th repunit 111111111.

Original entry on oeis.org

1, 3, 9, 37, 111, 333, 333667, 1001001, 3003003, 12345679, 37037037, 111111111
Offset: 1

Views

Author

M. F. Hasler, Oct 13 2011

Keywords

Comments

The prime factorization of (10^9 - 1)/9 is 3^2 * 37 * 333667. - Alonso del Arte, Apr 27 2014

Crossrefs

Programs

A199799 Totatives of 111111.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 16, 17, 19, 20, 23, 25, 29, 31, 32, 34, 38, 40, 41, 43, 46, 47, 50, 53, 58, 59, 61, 62, 64, 67, 68, 71, 73, 76, 79, 80, 82, 83, 85, 86, 89, 92, 94, 95, 97, 100, 101, 103, 106, 107, 109, 113, 115, 116, 118, 122, 124, 125, 127, 128, 131, 134
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 11 2011

Keywords

Comments

a(n) and 111111 are coprime, 111111 = 3*7*11*13*37; empty intersections with A008585, A008593, A008595, or A085959; sequence is finite with 51840 terms, A000010(111111) = 51840, last term: a(51840) = 111110.

Crossrefs

Cf. A109492 (divisors of 111111).

Programs

  • Haskell
    a199799 n = a199799_list !! (n-1)
    a199799_list = [x | x <- [1..111111], gcd x 111111 == 1]
  • Mathematica
    Select[Range[200],CoprimeQ[#,111111]&] (* Paolo Xausa, Sep 27 2023 *)

A197318 Divisors of the repunit 111111111111 = A002275(12).

Original entry on oeis.org

1, 3, 7, 11, 13, 21, 33, 37, 39, 77, 91, 101, 111, 143, 231, 259, 273, 303, 407, 429, 481, 707, 777, 1001, 1111, 1221, 1313, 1443, 2121, 2849, 3003, 3333, 3367, 3737, 3939, 5291, 7777, 8547, 9191, 9901, 10101, 11211, 14443, 15873, 23331, 26159, 27573, 29703
Offset: 1

Views

Author

M. F. Hasler, Oct 13 2011

Keywords

Comments

The sequence is marked "full" since even though they don't fit into the three lines above, all 128 terms are known and available in the b-file or using the given PARI code.

Crossrefs

Programs

  • Mathematica
    Divisors[111111111111] (* Paolo Xausa, Jul 04 2024 *)
  • PARI
    divisors(1e12\9)
Showing 1-7 of 7 results.