cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A035095 Smallest prime congruent to 1 (mod prime(n)).

Original entry on oeis.org

3, 7, 11, 29, 23, 53, 103, 191, 47, 59, 311, 149, 83, 173, 283, 107, 709, 367, 269, 569, 293, 317, 167, 179, 389, 607, 619, 643, 1091, 227, 509, 263, 823, 557, 1193, 907, 1571, 653, 2339, 347, 359, 1087, 383, 773, 3547, 797, 2111, 2677, 5449, 2749, 467
Offset: 1

Views

Author

Keywords

Comments

This is a version of the "least prime in special arithmetic progressions" problem.
Smallest numbers m such that largest prime factor of Phi(m) = prime(n), the n-th prime, also seems to be prime and identical to n-th term of A035095. See A068211, A068212, A065966: Min[x : A068211(x)=prime(n)] = A035095(n); e.g., Phi(a(7)) = Phi(103) = 2*3*17, of which 17 = p(7) is the largest prime factor, arising first here.
It appears that A035095, A066674, A125878 are probably all the same, but see the comments in A066674. - N. J. A. Sloane, Jan 05 2013
Minimum of the smallest prime factors of F(n,i) = (i^prime(n)-1)/(i-1), when i runs through all integers in [2, prime(n)]. Every prime factor of F(n,i) is congruent to 1 modulo prime(n). - Vladimir Shevelev, Nov 26 2014
Conjecture: a(n) is the smallest prime p such that gpf(p-1) = prime(n). See A023503. - Thomas Ordowski, Aug 06 2017
For n>1, a(n) is the smallest prime congruent to 1 mod (2*prime(n)). - Chai Wah Wu, Apr 28 2025

Examples

			a(8) = 191 because in the prime(8)k+1 = 19k+1 sequence, 191 is the smallest prime.
		

References

  • E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Bd 1 (reprinted Chelsea 1953).
  • E. C. Titchmarsh, A divisor problem, Renc. Circ. Math. Palermo, 54 (1930) pp. 414-429.
  • P. Turan, Über Primzahlen der arithmetischen Progression, Acta Sci. Math. (Szeged), 8 (1936/37) pp. 226-235.

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{p = Prime[n]}, r = 1 + p; While[ !PrimeQ[r], r += p]; r]; Array[a, 51] (* Jean-François Alcover, Sep 20 2011, after PARI *)
    a[n_]:=If[n<2,3,Block[{p=Prime[n]},r=1+2*p;While[!PrimeQ[r],r+=2*p]];r];Array[a,51] (* Zak Seidov, Dec 14 2013 *)
  • PARI
    a(n)=local(p,r);p=prime(n);r=1;while(!isprime(r),r+=p);r
    
  • PARI
    {my(N=66); forprime(p=2, , forprime(q=p+1,10^10, if((q-1)%p==0, print1(q,", "); N-=1; break)); if(N==0,break)); } \\ Joerg Arndt, May 27 2016
    
  • Python
    from itertools import count
    from sympy import prime, isprime
    def A035095(n): return 3 if n==1 else next(filter(isprime,count((p:=prime(n)<<1)+1,p))) # Chai Wah Wu, Apr 28 2025

Formula

According to a long-standing conjecture (see the 1979 Wagstaff reference), a(n) <= prime(n)^2 + 1. This would be sufficient to imply that a(n) is the smallest prime such that greatest prime divisor of a(n)-1 is prime(n), the n-th prime: A006530(a(n)-1) = A000040(n). This in turn would be sufficient to imply that no value occurs twice in this sequence. - Franklin T. Adams-Watters, Jun 18 2010
a(n) = 1 + A035096(n)*A000040(n). - Zak Seidov, Dec 27 2013

Extensions

Edited by Franklin T. Adams-Watters, Jun 18 2010
Minor edits by N. J. A. Sloane, Jun 27 2010
Edited by N. J. A. Sloane, Jan 05 2013

A070858 Smallest prime == 1 mod L, where L = LCM of 1 to n.

Original entry on oeis.org

2, 3, 7, 13, 61, 61, 421, 2521, 2521, 2521, 55441, 55441, 4324321, 4324321, 4324321, 4324321, 85765681, 85765681, 232792561, 232792561, 232792561, 232792561, 10708457761, 10708457761, 26771144401, 26771144401, 401567166001, 401567166001, 18632716502401, 18632716502401
Offset: 1

Views

Author

Amarnath Murthy, May 16 2002

Keywords

Comments

Beginning with 3, smallest prime p = a(n) such that p + k is divisible by k + 1 for each k = 1, 2, ..., n. For example: 61 --> 62, 63, 64, 65 and 66 are divisible respectively by 2, 3, 4, 5 and 6. - Robin Garcia, Jul 23 2012

Crossrefs

Programs

  • Maple
    A070858 := proc(n)
        local l,p;
        l := ilcm(seq(i,i=1..n)) ;
        for p from 1 by l do
            if isprime(p) then
                return p;
            end if;
        end do:
    end proc; # R. J. Mathar, Jun 25 2013
  • Mathematica
    a[n_] := Module[{m = 1, lcm = LCM @@ Range[n]}, While[!PrimeQ[m], m += lcm]; m]; Array[a, 30] (* Amiram Eldar, Mar 15 2025 *)
  • PARI
    a(n)=my(L=lcm(vector(n,i,i)),k=1);while(!ispseudoprime(k+=L),); k \\ Charles R Greathouse IV, Jun 25 2013

Extensions

More terms from Sascha Kurz, Feb 02 2003

A035091 Smallest prime == 1 mod (n^2).

Original entry on oeis.org

2, 5, 19, 17, 101, 37, 197, 193, 163, 101, 727, 433, 677, 197, 1801, 257, 3469, 1297, 10831, 401, 883, 1453, 12697, 577, 11251, 677, 1459, 3137, 10093, 1801, 15377, 12289, 2179, 3469, 7351, 1297, 5477, 18773, 9127, 1601, 16811, 3529, 22189, 11617
Offset: 1

Views

Author

Keywords

Comments

Smallest prime of form (n^2)*k+1, i.e., an arithmetic progression with n^2 differences; k is the subscript of the progressions.

Examples

			a(5) = 101 because in 5^2k + 1 = 25k + 1 progression k=4 generates the smallest prime (this is 101) and 26, 51, and 76 are composite.
		

Crossrefs

Analogous case is A034694. Special case is A002496.

Programs

  • Mathematica
    With[{prs=Prime[Range[2500]]},Flatten[Table[Select[prs,Mod[#-1,n^2]==0&,1],{n,50}]]] (* Harvey P. Dale, Sep 22 2021 *)
  • PARI
    a(n) = if(n == 1, 2, my(s = n^2); forprime(p = 1, , if(p % s == 1, return(p)))); \\ Amiram Eldar, Mar 16 2025

A070845 Largest n-digit number with exactly n divisors, or 0 if no such number exists.

Original entry on oeis.org

1, 97, 961, 9998, 83521, 999981, 4826809, 99999994, 999887641, 9999999824, 25937424601, 999999999981, 3138428376721, 99999999998144, 999997242389289, 9999999999999997, 45949729863572161, 999999999999999252
Offset: 1

Views

Author

Amarnath Murthy, May 12 2002

Keywords

Crossrefs

Cf. A070844.

Formula

If n is a prime >= 29 then a(n) = 0. - Chandler

Extensions

a(6) from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 07 2003
Extended by Ray Chandler, Feb 10 2009

A073913 Number of staircase polygons on the square lattice with perimeter 2n and one (possibly rotated) staircase polygonal hole.

Original entry on oeis.org

1, 12, 94, 604, 3461, 18412, 93016, 452500, 2139230, 9890404, 44921002, 201099320, 889594210, 3896177956, 16920602244, 72954802376, 312595497011, 1332153819572, 5650155211024, 23864065957572, 100418115489408
Offset: 8

Views

Author

Olivier Gérard, Feb 14 2009, based on data from the web site of Iwan Jensen

Keywords

Comments

The old entry with this A-number was a duplicate of A070844.

Crossrefs

Formula

G.f.: -(1/4)*(f1(x)-f2(x)+f3(x)-f4(x)) where f1(x) = (1-8*x+16*x^2-4*x^3)/(1-4*x), f2(x) = (1-6*x+6*x^2)/sqrt(1-4*x), f3(x) = (1/sqrt(2))*(sqrt(2+sqrt(3+4*x))*(3-8*x+2*x^2-sqrt(3+4*x)*(1-2*x)))/(1-4*x)^(3/4), f4(x) = (1/sqrt(2))*((3-8*x+2*x^2+sqrt(3+4*x)*(1-2*x)))/(1-4*x)^(1/4)/sqrt(2+sqrt(3+4*x)) [from Jensen and Rechnitzer, 2008]. - Sean A. Irvine, Dec 27 2024

Extensions

Offset corrected by Sean A. Irvine, Dec 27 2024
Showing 1-5 of 5 results.