A070933 Expansion of Product_{k>=1} 1/(1 - 2*t^k).
1, 2, 6, 14, 34, 74, 166, 350, 746, 1546, 3206, 6550, 13386, 27114, 54894, 110630, 222794, 447538, 898574, 1801590, 3610930, 7231858, 14480654, 28983246, 58003250, 116054034, 232186518, 464475166, 929116402, 1858449178, 3717247638, 7434950062, 14870628026, 29742206138, 59485920374, 118973809798, 237950730522, 475905520474
Offset: 0
Keywords
Examples
From _Joerg Arndt_, Apr 28 2013: (Start) There are a(3)=14 partitions of 3 with 2 ordered sorts. Here p:s stands for "part p of sort s": 01: [ 1:0 1:0 1:0 ] 02: [ 1:0 1:0 1:1 ] 03: [ 1:0 1:1 1:0 ] 04: [ 1:0 1:1 1:1 ] 05: [ 1:1 1:0 1:0 ] 06: [ 1:1 1:0 1:1 ] 07: [ 1:1 1:1 1:0 ] 08: [ 1:1 1:1 1:1 ] 09: [ 2:0 1:0 ] 10: [ 2:0 1:1 ] 11: [ 2:1 1:0 ] 12: [ 2:1 1:1 ] 13: [ 3:0 ] 14: [ 3:1 ] (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from T. D. Noe)
- Dragomir Z. Djokovic, Poincaré series of some pure and mixed trace algebras of two generic matrices, Journal of Algebra, Vol. 309, No. 2 (2007), 654-671, arXiv:math/0609262.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Igor Pak, Greta Panova, and Damir Yeliussizov, On the largest Kronecker and Littlewood-Richardson coefficients, arXiv:1804.04693 [math.CO], 2018.
- N. J. A. Sloane, Transforms.
Crossrefs
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-2*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018 -
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i)))) end: a:= n-> b(n$2): seq(a(n), n=0..50); # Alois P. Heinz, Sep 07 2014
-
Mathematica
CoefficientList[ Series[ Product[1 / (1 - 2t^k), {k, 1, 35}], {t, 0, 35}], t] CoefficientList[Series[E^Sum[2^k*x^k / (k*(1-x^k)), {k,1,30}],{x,0,30}],x] (* Vaclav Kotesovec, Sep 09 2014 *) (O[x]^20 - 1/QPochhammer[2,x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
-
Maxima
S(n,m):=if n=0 then 1 else if n
Vladimir Kruchinin, Sep 07 2014 */ -
PARI
N=66; q='q+O('q^N); Vec(1/sum(n=0, N, (-2)^n*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014
Formula
a(n) = (1/n)*Sum_{k=1..n} A054598(k)*a(n-k). - Vladeta Jovovic, Nov 23 2002
a(n) is asymptotic to c*2^n where c=3.46253527447396564949732... - Benoit Cloitre, Oct 26 2003. Right value of this constant is c = 1/A048651 = 3.46274661945506361153795734292443116454075790290443839132935303175891543974042... . - Vaclav Kotesovec, Sep 09 2014
Euler transform of A000031(n). - Vladeta Jovovic, Jun 23 2004
a(n) = Sum_{k=1..n} p(n,k)*A000079(k) where p(n,k) = number of integer partitions of n into k parts. - Thomas Wieder, May 07 2008
a(n) = S(n,1), where S(n,m) = 2 + Sum_{k=m..floor(n/2)} 2*S(n-k,k), S(n,n)=2, S(0,m)=1, S(n,m)=0 for n < m. - Vladimir Kruchinin, Sep 07 2014
a(n) = Sum_{lambda,mu,nu} (c^{lambda}{mu,nu})^2, where lambda ranges over all partitions of n, mu and nu range over all partitions satisfying |mu| + |nu| = n, and c^{lambda}{mu,nu} denotes a Littlewood-Richardson coefficient. - Richard Stanley, Nov 16 2014
G.f.: Sum_{i>=0} 2^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018
G.f.: Product_{j>=1} Product_{i>=1} 1/(1-x^(i*j))^A001037(j) given in Morrison link section 2.9. - Geoffrey Critzer, May 26 2021
Extensions
Edited and extended by Robert G. Wilson v, May 25 2002
Comments