A071190
Greatest prime factor of sum of divisors of n, for n >= 2; a(1) = 1.
Original entry on oeis.org
1, 3, 2, 7, 3, 3, 2, 5, 13, 3, 3, 7, 7, 3, 3, 31, 3, 13, 5, 7, 2, 3, 3, 5, 31, 7, 5, 7, 5, 3, 2, 7, 3, 3, 3, 13, 19, 5, 7, 5, 7, 3, 11, 7, 13, 3, 3, 31, 19, 31, 3, 7, 3, 5, 3, 5, 5, 5, 5, 7, 31, 3, 13, 127, 7, 3, 17, 7, 3, 3, 3, 13, 37, 19, 31, 7, 3, 7, 5, 31
Offset: 1
-
Table[FactorInteger[DivisorSigma[1,n]][[-1,1]],{n,80}] (* Harvey P. Dale, Nov 18 2014 *)
-
a(n) = if (n==1, 1, my(f = factor(sigma(n))); f[#f~,1]); \\ Michel Marcus, Sep 21 2014
A071187
Smallest prime factor of number of divisors of n; a(1) = 1.
Original entry on oeis.org
1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2
Offset: 1
324 = 18^2 = 2^2 * 3^4 has (2+1)*(4+1) = 3 * 5 = 15 divisors, thus a(324) = A020639(15) = 3. - _Antti Karttunen_, Nov 18 2019
Differs from
A329614 for the first time at n=324, where a(324) = 3, while
A329614(324) = 5.
A329613 gives the positions of differences.
-
a[n_] := FactorInteger[DivisorSigma[0, n]][[1, 1]]; Array[a, 90] (* Jean-François Alcover, Oct 01 2016 *)
-
A071187(n) = if(1==n, n, my(f = factor(numdiv(n))); vecmin(f[, 1])); \\ Antti Karttunen, Jul 24 2017
-
first(n) = my(v = vector(n, i, 2)); for(i=1,sqrtint(n), v[i^2] = numdiv(i^2)); v
A371418
The largest aliquot divisor of the sum of divisors of n; a(1) = 1.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 4, 5, 1, 9, 6, 14, 7, 12, 12, 1, 9, 13, 10, 21, 16, 18, 12, 30, 1, 21, 20, 28, 15, 36, 16, 21, 24, 27, 24, 13, 19, 30, 28, 45, 21, 48, 22, 42, 39, 36, 24, 62, 19, 31, 36, 49, 27, 60, 36, 60, 40, 45, 30, 84, 31, 48, 52, 1, 42, 72, 34, 63, 48, 72
Offset: 1
The sum of the divisors of 3 is 1 + 3 = 4. The divisors of 4 are 1, 2, 4. 2 is the largest aliquot divisor of 4. Therefore a(3) = 2.
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Robert D. Carmichael, Empirical Results in the Theory of Numbers, The Mathematics Teacher, Vol. 14, No. 6 (1921), pp. 305-310; alternative link. See p. 309.
- Eric Weisstein's World of Mathematics, Aliquot Sequence.
- Eric Weisstein's World of Mathematics, Multiperfect Number.
- Wikipedia, Aliquot sequence.
Cf.
A000203,
A000396,
A005820,
A023194,
A028982,
A028983,
A032742,
A071189,
A371419,
A371420,
A371421,
A371422,
A371423.
-
r[n_] := n/FactorInteger[n][[1, 1]]; a[n_] := r[DivisorSigma[1, n]]; Array[a, 100]
-
a(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}
A295078
Numbers n > 1 such that n and sigma(n) have the same smallest and simultaneously largest prime factors.
Original entry on oeis.org
6, 28, 40, 84, 120, 140, 224, 234, 270, 420, 468, 496, 672, 756, 936, 1080, 1120, 1170, 1372, 1488, 1550, 1638, 1782, 1862, 2176, 2340, 2480, 2574, 3100, 3250, 3276, 3360, 3472, 3564, 3724, 3744, 3780, 4116, 4464, 4598, 4650, 4680, 5148, 5456, 5586, 6048, 6200
Offset: 1
40 = 2^3*5 and sigma(40) = 90 = 2*3^2*5 hence 40 is in the sequence.
The first odd term is 29713401 = 3^2 * 23^2 * 79^2; sigma(29713401) = 45441669 = 3*7^3*13*43*79.
-
[n: n in [2..10000] | Minimum(PrimeDivisors(n)) eq Minimum(PrimeDivisors(SumOfDivisors(n))) and Maximum(PrimeDivisors(n)) eq Maximum(PrimeDivisors(SumOfDivisors(n)))]
-
filter:= proc(n) local f, s; uses numtheory;
f:= factorset(n);
s:= factorset(sigma(n));
min(f) = min(s) and max(f)=max(s)
end proc:
select(filter, [$2..10^4]); # Robert Israel, Jan 08 2018
-
Rest@ Select[Range@ 6200, SameQ @@ Map[{First@ #, Last@ #} &@ FactorInteger[#][[All, 1]] &, {#, DivisorSigma[1, #]}] &] (* Michael De Vlieger, Nov 13 2017 *)
-
isok(n) = if (n > 1, my(fn = factor(n)[,1], fs = factor(sigma(n))[,1]); (vecmin(fn) == vecmin(fs)) && (vecmax(fn) == vecmax(fs))); \\ Michel Marcus, Jan 08 2018
Added condition n>1 to definition. Corrected b-file. -
N. J. A. Sloane, Feb 03 2018
A336924
a(n) = spf(1+sigma(n)), where spf is the smallest prime factor and sigma is the sum of divisors function.
Original entry on oeis.org
2, 2, 5, 2, 7, 13, 3, 2, 2, 19, 13, 29, 3, 5, 5, 2, 19, 2, 3, 43, 3, 37, 5, 61, 2, 43, 41, 3, 31, 73, 3, 2, 7, 5, 7, 2, 3, 61, 3, 7, 43, 97, 3, 5, 79, 73, 7, 5, 2, 2, 73, 3, 5, 11, 73, 11, 3, 7, 61, 13, 3, 97, 3, 2, 5, 5, 3, 127, 97, 5, 73, 2, 3, 5, 5, 3, 97, 13, 3, 11, 2, 127, 5, 3, 109, 7, 11, 181, 7, 5, 113, 13
Offset: 1
A280348
Irregular triangle read by rows in which row n lists the divisors of the sum of the divisors of n.
Original entry on oeis.org
1, 1, 3, 1, 2, 4, 1, 7, 1, 2, 3, 6, 1, 2, 3, 4, 6, 12, 1, 2, 4, 8, 1, 3, 5, 15, 1, 13, 1, 2, 3, 6, 9, 18, 1, 2, 3, 4, 6, 12, 1, 2, 4, 7, 14, 28, 1, 2, 7, 14, 1, 2, 3, 4, 6, 8, 12, 24, 1, 2, 3, 4, 6, 8, 12, 24, 1, 31, 1, 2, 3, 6, 9, 18, 1, 3, 13, 39, 1, 2, 4, 5, 10, 20, 1, 2, 3, 6, 7, 14, 21, 42, 1, 2, 4, 8, 16, 32, 1, 2, 3, 4, 6, 9, 12, 18, 36
Offset: 1
Triangle begins:
1;
1, 3;
1, 2, 4;
1, 7;
1, 2, 3, 6;
1, 2, 3, 4, 6, 12;
1, 2, 4, 8;
1, 3, 5, 15;
1, 13;
1, 2, 3, 6, 9, 18;
1, 2, 3, 4, 6, 12;
1, 2, 4, 7, 14, 28;
1, 2, 7, 14;
1, 2, 3, 4, 6, 8, 12, 24;
1, 2, 3, 4, 6, 8, 12, 24;
1, 31;
1, 2, 3, 6, 9, 18;
1, 3, 13, 39;
1, 2, 4, 5, 10, 20;
1, 2, 3, 6, 7, 14, 21, 42;
1, 2, 4, 8, 16, 32;
1, 2, 3, 4, 6, 9, 12, 18, 36;
1, 2, 3, 4, 6, 8, 12, 24;
1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60;
...
For n = 10 the sum of the divisors of 10 is 1 + 2 + 5 + 10 = 18, so row 10 of the triangle lists the divisors of 18: 1, 2, 3, 6, 9, 18.
A295076
Numbers n > 1 such that n and sigma(n) have the same smallest prime factor.
Original entry on oeis.org
6, 10, 12, 14, 20, 22, 24, 26, 28, 30, 34, 38, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 62, 66, 68, 70, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 130, 132, 134, 136, 138, 140, 142, 146, 148
Offset: 1
30 = 2*3*5 and sigma(30) = 72 = 2^3*3^2 hence 30 is in the sequence.
Cf.
A071834 (numbers n such that n and sigma(n) have the same largest prime factor).
-
[n: n in [2..1000000] | Minimum(PrimeDivisors(SumOfDivisors(n))) eq Minimum(PrimeDivisors(n))]
-
select(t -> min(numtheory:-factorset(t))=min(numtheory:-factorset(numtheory:-sigma(t))), [$2..1000]); # Robert Israel, Nov 14 2017
-
Rest@ Select[Range@ 150, SameQ @@ Map[FactorInteger[#][[1, 1]] &, {#, DivisorSigma[1, #]}] &] (* Michael De Vlieger, Nov 13 2017 *)
-
isok(n) = factor(n)[1,1] == factor(sigma(n))[1,1]; \\ Michel Marcus, Nov 14 2017
Showing 1-7 of 7 results.
Comments