cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A071189 Smallest prime factor of sum of divisors of n.

Original entry on oeis.org

1, 3, 2, 7, 2, 2, 2, 3, 13, 2, 2, 2, 2, 2, 2, 31, 2, 3, 2, 2, 2, 2, 2, 2, 31, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 127, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 11, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[DivisorSigma[1,n]][[1,1]],{n,90}] (* Harvey P. Dale, May 15 2011 *)
  • PARI
    A071189(n) = if(1==n, n, my(f = factor(sigma(n))); vecmin(f[, 1])); \\ Antti Karttunen, Jul 24 2017
    
  • PARI
    first(n) = {my(v = vector(n, i, 2), sq = List()); for(i=1, sqrtint(n), listput(sq, i^2); listput(sq, 2*i^2)); listsort(sq); v[1]=1; for(i=2, #sq, if(sq[i]>n,break); v[sq[i]] = factor(sigma(sq[i]))[, 1]~[1]);v} \\ David A. Corneth, Jul 24 2017

Formula

a(n) = A020639(A000203(n)).
a(n) = 2 if and only if n is in A028983. - Amiram Eldar, Mar 24 2024

A071188 Largest prime factor of number of divisors of n; a(1)=1.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 5, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 5, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 7, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 5, 5, 2, 2, 3, 2, 2, 2, 2, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2002

Keywords

Comments

From Robert Israel, Dec 04 2016: (Start)
a(n)=2 if and only if every member of the prime signature of n is of the form 2^k-1.
a(m*k) = max(a(m),a(k)) if m and k are coprime. (End)

Crossrefs

Programs

  • Haskell
    a071188 = a006530 . a000005  -- Reinhard Zumkeller, Sep 04 2013
    
  • Maple
    f:= n -> max(1, numtheory:-factorset(numtheory:-tau(n))):
    map(f, [$1..100]); # Robert Israel, Dec 04 2016
  • Mathematica
    Max[Transpose[FactorInteger[#]][[1]]]&/@DivisorSigma[0,Range[100]] (* Harvey P. Dale, Aug 28 2013 *)
  • PARI
    a(n) = if(n == 1, 1, vecmax(factor(numdiv(n))[, 1])); \\ Michel Marcus, Dec 05 2016

Formula

a(n) = A006530(A000005(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*d(1) + Sum_{k>=2} prime(k)*(d(k) - d(k-1)) = 2.4365518864..., where d(1) = A327839, and for k >= 2, d(k) is the asymptotic density of numbers whose number of divisors is a prime(k)-smooth number, i.e., d(k) = Product_{p prime} ((1 - 1/p) * Sum_{i, A006530(i) <= prime(k)} 1/p^(i-1)) (see A354181 for an example). - Amiram Eldar, Jan 15 2024

A071834 Numbers n > 1 such that n and sigma(n) have the same largest prime factor.

Original entry on oeis.org

6, 28, 40, 84, 117, 120, 135, 140, 224, 234, 270, 420, 468, 496, 585, 672, 756, 775, 819, 891, 931, 936, 1080, 1120, 1170, 1287, 1372, 1488, 1550, 1625, 1638, 1782, 1862, 2176, 2299, 2325, 2340, 2480, 2574, 2793, 3100, 3159, 3250, 3276, 3360, 3472
Offset: 1

Views

Author

Benoit Cloitre, Jun 08 2002

Keywords

Comments

By pure convention, we could include a leading 1 to this sequence, as someone using the mathematically arguably value A006530(1) = 1 might search for this sequence with a leading 1. However, this was not done in view of the age of this sequence. - Rémy Sigrist, Jan 09 2018

Examples

			1550 = 2*5^2*31 and sigma(1550) = 2976 = 2^5*3*31 hence 1550 is in the sequence.
		

Crossrefs

Cf. A000203 (sigma), A006530 (gpf), A071190.
A000396 (perfect numbers) is a subsequence.

Programs

  • Mathematica
    fQ[n_] := FactorInteger[n][[-1, 1]] == FactorInteger[DivisorSigma[1, n]][[-1, 1]]; Rest@ Select[ Range@3500, fQ] (* Robert G. Wilson v, Jan 09 2018 *)
  • PARI
    for(n=2,1000,if(component(component(factor(n),1),omega(n)) == component(component(factor(sigma(n)),1),omega(sigma(n))), print1(n,",")))
    
  • PARI
    isok(n) = vecmax(factor(n)[,1]) == vecmax(factor(sigma(n))[,1]); \\ Michel Marcus, Sep 29 2017

Formula

n such that A006530(n) = A006530(sigma(n)).
n such that A006530(n) = A071190(n). - Michel Marcus, Oct 11 2017

A295078 Numbers n > 1 such that n and sigma(n) have the same smallest and simultaneously largest prime factors.

Original entry on oeis.org

6, 28, 40, 84, 120, 140, 224, 234, 270, 420, 468, 496, 672, 756, 936, 1080, 1120, 1170, 1372, 1488, 1550, 1638, 1782, 1862, 2176, 2340, 2480, 2574, 3100, 3250, 3276, 3360, 3472, 3564, 3724, 3744, 3780, 4116, 4464, 4598, 4650, 4680, 5148, 5456, 5586, 6048, 6200
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2017

Keywords

Comments

All even perfect numbers are terms.
Conjecture: A007691 (multiply-perfect numbers) is a subsequence.
Note that an odd perfect number (if it exists) would be a counterexample to the conjecture. - Robert Israel, Jan 08 2018
Intersection of A071834 and A295076.
Numbers n such that A020639(n) = A020639(sigma(n)) and simultaneously A006530(n) = A006530(sigma(n)).
Numbers n such that A020639(n) = A071189(n) and simultaneously A006530(n) = A071190(n).
Supersequence of A027598.

Examples

			40 = 2^3*5 and sigma(40) = 90 = 2*3^2*5 hence 40 is in the sequence.
The first odd term is 29713401 = 3^2 * 23^2 * 79^2; sigma(29713401) = 45441669 = 3*7^3*13*43*79.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..10000] | Minimum(PrimeDivisors(n)) eq Minimum(PrimeDivisors(SumOfDivisors(n))) and Maximum(PrimeDivisors(n)) eq Maximum(PrimeDivisors(SumOfDivisors(n)))]
    
  • Maple
    filter:= proc(n) local f, s; uses numtheory;
      f:= factorset(n);
      s:= factorset(sigma(n));
      min(f) = min(s) and max(f)=max(s)
    end proc:
    select(filter, [$2..10^4]); # Robert Israel, Jan 08 2018
  • Mathematica
    Rest@ Select[Range@ 6200, SameQ @@ Map[{First@ #, Last@ #} &@ FactorInteger[#][[All, 1]] &, {#, DivisorSigma[1, #]}] &] (* Michael De Vlieger, Nov 13 2017 *)
  • PARI
    isok(n) = if (n > 1, my(fn = factor(n)[,1], fs = factor(sigma(n))[,1]); (vecmin(fn) == vecmin(fs)) && (vecmax(fn) == vecmax(fs))); \\ Michel Marcus, Jan 08 2018

Extensions

Added condition n>1 to definition. Corrected b-file. - N. J. A. Sloane, Feb 03 2018

A333646 Numbers k divisible by the largest prime factor of the sum of divisors of k; a(1) = 1.

Original entry on oeis.org

1, 6, 15, 28, 30, 33, 40, 42, 51, 66, 69, 84, 91, 95, 102, 105, 117, 120, 135, 138, 140, 141, 145, 159, 165, 182, 186, 190, 210, 213, 224, 231, 234, 255, 270, 273, 280, 282, 285, 287, 290, 295, 308, 318, 321, 330, 345, 357, 364, 395, 420, 426, 435, 440, 445, 455
Offset: 1

Views

Author

Amiram Eldar, Jun 05 2020

Keywords

Comments

Pomerance (1973) proved that all the harmonic numbers (A001599) are in this sequence.
If m is a product of distinct Mersenne primes (A046528), m > 1 and 3 | m, then 2*m is a term.
If p is a term of A005105 then, 6*p is a term for p > 3, and 3*p is a term if p is not a Mersenne prime (A000668).

Examples

			15 is a term since sigma(15) = 24, 3 is the largest prime factor of 24, and 15 is divisible by 3.
		

Crossrefs

A001599 and A105402 are subsequences.

Programs

  • Mathematica
    Select[Range[500], Divisible[#, FactorInteger[DivisorSigma[1, #]][[-1, 1]]] &]

Formula

Numbers k such that A071190(k) | k.

A071965 Numbers k such that k = Gpf(k) * Gpf(sigma(k)) where Gpf(k) = A006530(k) is the greatest prime factor of k.

Original entry on oeis.org

15, 33, 51, 69, 91, 95, 141, 145, 159, 213, 287, 295, 321, 395, 445, 473, 573, 581, 679, 703, 745, 895, 973, 995, 1139, 1149, 1169, 1195, 1199, 1293, 1339, 1345, 1441, 1561, 1717, 1757, 1795, 1891, 1941, 2051, 2147, 2167, 2245, 2353, 2395, 2443, 2495, 2589
Offset: 1

Views

Author

Benoit Cloitre, Jun 16 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2,3000],FactorInteger[#][[-1,1]]FactorInteger[ DivisorSigma[ 1,#]] [[-1,1]]==#&] (* Harvey P. Dale, Sep 15 2011 *)
  • PARI
    for(n=1,3000,if(vecmax(component(factor(n),1))*vecmax(component(factor(sigma(n)),1))==n,print1(n,",")))

A078551 Largest prime dividing sigma(2,n).

Original entry on oeis.org

5, 5, 7, 13, 5, 5, 17, 13, 13, 61, 7, 17, 5, 13, 31, 29, 13, 181, 13, 5, 61, 53, 17, 31, 17, 41, 7, 421, 13, 37, 13, 61, 29, 13, 13, 137, 181, 17, 17, 29, 5, 37, 61, 13, 53, 17, 31, 43, 31, 29, 17, 281, 41, 61, 17, 181, 421, 1741, 13, 1861, 37, 13, 127, 17, 61, 449, 29, 53
Offset: 2

Views

Author

Labos Elemer, Dec 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; a[n_] := gpf[DivisorSigma[2, n]]; Array[a, 70, 2] (* Amiram Eldar, Aug 01 2019 *)

Formula

a(n) = A006530(A001157(n)).

A078552 Largest prime dividing sigma(3,n).

Original entry on oeis.org

3, 7, 73, 7, 7, 43, 13, 757, 7, 37, 73, 157, 43, 7, 151, 13, 757, 7, 73, 43, 37, 13, 13, 829, 157, 73, 73, 271, 7, 19, 73, 37, 13, 43, 757, 43, 7, 157, 13, 547, 43, 139, 73, 757, 13, 103, 151, 1063, 829, 13, 157, 919, 73, 37, 43, 7, 271, 163, 73, 523, 19, 757, 337, 157
Offset: 2

Views

Author

Labos Elemer, Dec 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; a[n_] := gpf[DivisorSigma[3, n]]; Array[a, 65, 2] (* Amiram Eldar, Aug 01 2019 *)

Formula

a(n) = A006530(A001158(n)).

A078553 Largest prime dividing sigma(4,n).

Original entry on oeis.org

17, 41, 13, 313, 41, 1201, 257, 73, 313, 7321, 41, 14281, 1201, 313, 41, 41761, 73, 3833, 313, 1201, 7321, 139921, 257, 601, 14281, 193, 1201, 353641, 313, 1129, 241, 7321, 41761, 1201, 73, 10529, 3833, 14281, 313, 10313, 1201, 521, 7321, 313
Offset: 2

Views

Author

Labos Elemer, Dec 05 2002

Keywords

Examples

			Observe nontrivial frequent occurrence of several primes like 73,313,14281, etc.
		

Crossrefs

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; a[n_] := gpf[DivisorSigma[4, n]]; Array[a, 50, 2] (* Amiram Eldar, Aug 01 2019 *)

Formula

a(n) = A006530(A001159(n)).

A078554 Largest prime dividing sigma(5,n).

Original entry on oeis.org

11, 61, 151, 521, 61, 191, 41, 4561, 521, 13421, 151, 2411, 191, 521, 1801, 101, 4561, 2251, 521, 191, 13421, 211, 61, 1741, 2411, 1181, 191, 401, 521, 21821, 331, 13421, 101, 521, 4561, 1824841, 2251, 2411, 521, 4111, 191, 3341101, 13421, 4561, 211
Offset: 2

Views

Author

Labos Elemer, Dec 05 2002

Keywords

Examples

			Observe nontrivial frequent occurrence of several primes like 61,191,521,4561, etc.
		

Crossrefs

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; a[n_] := gpf[DivisorSigma[5, n]]; Array[a, 50, 2] (* Amiram Eldar, Aug 01 2019 *)
    FactorInteger[#][[-1,1]]&/@DivisorSigma[5,Range[2,50]] (* Harvey P. Dale, Feb 02 2025 *)

Formula

a(n) = A006530(A001160(n)).
Showing 1-10 of 10 results.