A071189 Smallest prime factor of sum of divisors of n.
1, 3, 2, 7, 2, 2, 2, 3, 13, 2, 2, 2, 2, 2, 2, 31, 2, 3, 2, 2, 2, 2, 2, 2, 31, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 127, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 11, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[FactorInteger[DivisorSigma[1,n]][[1,1]],{n,90}] (* Harvey P. Dale, May 15 2011 *)
-
PARI
A071189(n) = if(1==n, n, my(f = factor(sigma(n))); vecmin(f[, 1])); \\ Antti Karttunen, Jul 24 2017
-
PARI
first(n) = {my(v = vector(n, i, 2), sq = List()); for(i=1, sqrtint(n), listput(sq, i^2); listput(sq, 2*i^2)); listsort(sq); v[1]=1; for(i=2, #sq, if(sq[i]>n,break); v[sq[i]] = factor(sigma(sq[i]))[, 1]~[1]);v} \\ David A. Corneth, Jul 24 2017
Formula
a(n) = 2 if and only if n is in A028983. - Amiram Eldar, Mar 24 2024
Comments