A071356 Expansion of (1 - 2*x - sqrt(1 - 4*x - 4*x^2))/(4*x^2).
1, 2, 6, 20, 72, 272, 1064, 4272, 17504, 72896, 307648, 1312896, 5655808, 24562176, 107419264, 472675072, 2091206144, 9296612352, 41507566592, 186045061120, 836830457856, 3776131489792, 17089399689216, 77548125675520, 352766964908032
Offset: 0
Keywords
Examples
a(3) = 20 = sum of top row terms in M^3 = (9 + 7 + 3 + 1).
Links
- Fung Lam, Table of n, a(n) for n = 0..1465
- Marcelo Aguiar and Walter Moreira, Combinatorics of the free Baxter algebra, arXiv:math/0510169 [math.CO], 2005-2007, see Corollary 3.3.iii.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Miklos Bona, Stack-sorting preimages and 0-1-trees, arXiv:2505.18295 [math.CO], 2025. See p. 3.
- Vuong Bui, Bounding Klarner's constant from above using a simple recurrence, arXiv:2412.20143 [math.CO], 2024.
- Wenqin Cao, Emma Yu Jin, and Zhicong Lin, Enumeration of inversion sequences avoiding triples of relations, Discrete Applied Mathematics (2019); see also author's copy
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Colin Defant, Enumeration of Stack-Sorting Preimages via a Decomposition Lemma, arXiv:1904.02829 [math.CO], 2019.
- Serkan Demiriz, Adem Şahin, and Sezer Erdem, Some topological and geometric properties of novel generalized Motzkin sequence spaces, Rendiconti Circ. Mat. Palermo Ser. 2 (2025) Vol. 74, No. 136. See p. 4.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
- Li Guo and Yunnan Li, Braided dendriform and tridendriform algebras and braided Hopf algebras of planar trees, arXiv:1906.06454 [math.QA], 2019.
- Bin Han, The gamma-positive coefficients arising in segmented permutations, Discrete Math., 344 (2012), #112336. See p. 7.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Chetak Hossain, Quotients Derived from Posets in Algebraic and Topological Combinatorics, Ph. D. Dissertation, North Carolina State University (2019).
- Germain Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973), p. 32-33 (same sequence but with offset 1).
- Germain Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Donatella Merlini, Douglas G. Rogers, Renzo Sprugnoli, and M. Cecilia Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math., 49 (1997), 301-320.
- Louis W. Shapiro and Carol J. Wang, A bijection between 3-Motzkin paths and Schroder paths with no peak at odd height, JIS 12 (2009) 09.3.2.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!((1 - 2*x - Sqrt(1 - 4*x - 4*x^2))/(4*x^2))); // Vincenzo Librandi, Jan 21 2020 -
Mathematica
CoefficientList[Series[(1-2*x-Sqrt[1-4*x-4*x^2])/(4*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 24 2013 *) a[n_] := 2^n Hypergeometric2F1[(1-n)/2, -n/2, 2, 2]; Table[a[n], {n, 0, 24}] (* Peter Luschny, May 30 2021 *)
-
PARI
a(n)=if(n<0,0,n++; polcoeff(serreverse(x/(1+2*x+2*x^2)+x*O(x^n)),n))
-
PARI
{a(n)= if(n<1, n==0, polcoeff( 2/(1 -2*x +sqrt(1 -4*x -4*x^2 +x*O(x^n))), n))}
-
PARI
{a(n)= local(A); if(n<0, 0, A= x*O(x^n); n!*simplify(polcoeff( exp(2*x +A)* besseli(1, 2*x* quadgen(8) +A), n)))} /* Michael Somos, Mar 31 2007 */
-
Sage
def A071356_list(n): # n>=1 T = [0]*(n+1); R = [1] for m in (1..n-1): a,b,c = 1,0,0 for k in range(m,-1,-1): r = a + 2*(b + c) if k < m : T[k+2] = u; a,b,c = T[k-1],a,b u = r T[1] = u; R.append(u) return R A071356_list(25) # Peter Luschny, Nov 01 2012
Formula
G.f. A(x) satisfies 2x^2*A(x)^2+(2x-1)*A(x)+1=0 and A(x)=1/(1-2x-2x^2/A(x)). - Michael Somos, Sep 06 2003
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)C(k)2^(n-2k)*2^k. - Paul Barry, May 18 2005
G.f.: (1 - 2*x - sqrt(1 - 4*x - 4*x^2) )/(4*x^2) = 2/(1 - 2*x +sqrt(1 - 4*x - 4*x^2)).
Moment representation is a(n) = (1/(4*Pi))*int(x^n*sqrt(4-4x-x^2), x, -2*sqrt(2)-2, 2*sqrt(2)-2). - Paul Barry, Jan 08 2008
G.f.: 1/(1-2x-2x^2/(1-2x-2x^2/(1-2x-2x^2/(1-2x-2x^2/(1-2x-2x^2/.... (continued fraction). - Paul Barry, Dec 06 2008
From Gary W. Adamson, Jul 22 2011: (Start)
a(n) = sum of top row terms of M^n, M = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
2, 1, 1, 0, 0, 0, ...
2, 2, 1, 1, 0, 0, ...
2, 2, 2, 1, 1, 0, ...
2, 2, 2, 2, 1, 1, ...
2, 2, 2, 2, 2, 1, ... (End)
E.g.f.: a(n) = n!* [x^n] exp(2*x)*BesselI(1, 2*sqrt(2)*x)/(sqrt(2)*x). - Peter Luschny, Aug 25 2012
D-finite with recurrence: (n+2)*a(n) +2*(-2*n-1)*a(n-1) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Dec 02 2012 (Formula verified and used for computations. - Fung Lam, Feb 24 2014)
a(n) ~ 2^(n - 1/4) * (1+sqrt(2))^(n + 3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 24 2013, simplified Jan 26 2019
a(n) = A179190(n+2)/4. - R. J. Mathar, Jan 20 2020
a(n) = 2^n * hypergeom((1 - n)/2, -n/2, 2, 2). - Peter Luschny, May 30 2021
a(n) = (-2*î)^(n+2) * (Legendre_P(n+2, i) - Legendre_P(n, i))/(4*(2*n + 3)). - Peter Bala, May 06 2024
From Emanuele Munarini, Jun 13 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k)*2^(n-k)/(k+1).
a(n) = Sum_{k=0..floor((n+2)/3)} binomial(n-2k+2, 2k)*Catalan(n-2k+1).
a(n) = Sum_{k=0..floor((n+2)/4)} binomial(n-2k+1, 2k+1)*Catalan(n-2k). (End)
Comments