cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A096011 Arrange numbers n such that A071364(n) <> A046523(n) by prime signature, cf. A071365.

Original entry on oeis.org

18, 54, 50, 90, 250, 75, 108, 126, 375, 98, 150, 500, 198, 686, 147, 162, 294, 1125, 234, 1029, 242, 270, 1250, 490, 1372, 306, 1715, 245, 300, 378, 1875, 726, 3087, 342, 2662, 338, 324, 588, 594, 4802, 735, 5324, 350, 3993, 363, 450, 2500, 980, 702
Offset: 0

Views

Author

Alford Arnold, Jul 20 2004

Keywords

Comments

In the example, the first column is sequence A056808; the first row is A095990.

Examples

			The array begins
18 50 75 98 147 ...
54 250 375 686
90 126 198
108 500
150
...
		

Extensions

Extended by Ray Chandler, Jul 31 2004

A304678 Numbers with weakly increasing prime multiplicities.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 16 2018

Keywords

Comments

Complement of A112769.

Examples

			12 = 2*2*3 has prime multiplicities (2,1) so is not in the sequence.
36 = 2*2*3*3 has prime multiplicities (2,2) so is in the sequence.
150 = 2*3*5*5 has prime multiplicities (1,1,2) so is in the sequence.
		

Crossrefs

Programs

  • Maple
    q:= n-> (l-> (t-> andmap(i-> l[i, 2]<=l[i+1, 2],
            [$1..t-1]))(nops(l)))(sort(ifactors(n)[2])):
    select(q, [$1..120])[];  # Alois P. Heinz, Nov 11 2019
  • Mathematica
    Select[Range[200],OrderedQ[FactorInteger[#][[All,2]]]&]
    Select[Range[90],Min[Differences[FactorInteger[#][[;;,2]]]]>=0&] (* Harvey P. Dale, Jan 28 2024 *)
  • PARI
    isok(n) = my(vm = factor(n)[,2]); vm == vecsort(vm); \\ Michel Marcus, May 17 2018

A071364 Smallest number with same sequence of exponents in canonical prime factorization as n.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 12, 2, 6, 6, 16, 2, 18, 2, 12, 6, 6, 2, 24, 4, 6, 8, 12, 2, 30, 2, 32, 6, 6, 6, 36, 2, 6, 6, 24, 2, 30, 2, 12, 12, 6, 2, 48, 4, 18, 6, 12, 2, 54, 6, 24, 6, 6, 2, 60, 2, 6, 12, 64, 6, 30, 2, 12, 6, 30, 2, 72, 2, 6, 18, 12, 6, 30, 2, 48, 16, 6, 2, 60, 6, 6, 6, 24
Offset: 1

Views

Author

Reinhard Zumkeller, May 21 2002

Keywords

Comments

A046523(a(n))=A046523(n); A046523(n)<=a(n)<=n; A001221(a(n))=A001221(n), A001222(a(n))=A001222(n); A020639(a(n))=2, A006530(a(n))=A000040(A001221(n))<=A006530(n); A000005(a(n))=A000005(n);
a(a(n))=a(n); a(n)=2^k iff n=p^k, p prime, k>0 (A000961); if n>1 is not a prime power, then a(n) mod 6 = 0; range of values = A055932, as distinct prime factors of a(n) are consecutive: a(n)=n iff n=A055932(k) for some k;
a(A003586(n))=A003586(n).

Examples

			a(105875) = a(5*5*5*7*11*11) = 2*2*2*3*5*5 = 600.
		

Crossrefs

Cf. A000040.
The range is A055932.
The reversed version is A331580.
Unsorted prime signature is A124010.
Numbers whose prime signature is aperiodic are A329139.

Programs

  • Haskell
    a071364 = product . zipWith (^) a000040_list . a124010_row
    -- Reinhard Zumkeller, Feb 19 2012
    
  • Mathematica
    Table[ e = Last /@ FactorInteger[n]; Product[Prime[i]^e[[i]], {i, Length[e]}], {n, 88}] (* Ray Chandler, Sep 23 2005 *)
  • PARI
    a(n) = f = factor(n); for (i=1, #f~, f[i,1] = prime(i)); factorback(f); \\ Michel Marcus, Jun 13 2014
    
  • Python
    from math import prod
    from sympy import prime, factorint
    def A071364(n): return prod(prime(i+1)**p[1] for i,p in enumerate(sorted(factorint(n).items()))) # Chai Wah Wu, Sep 16 2022

Formula

In prime factorization of n, replace least prime by 2, next least by 3, etc.
a(n) = product(A000040(k)^A124010(k): k=1..A001221(n)). - Reinhard Zumkeller, Apr 27 2013

Extensions

Extended by Ray Chandler, Sep 23 2005

A242031 Numbers n such that prime factorization n = p_1^k_1*p_2^k_2*...*p_r^k_r satisfies k_1 >= k_2 >= ... >= k_r.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1

Views

Author

Jean-François Alcover, Aug 14 2014

Keywords

Comments

Complement sequence begins 18, 50, 54, 75, 90, 98, ... (A071365).

Examples

			12 = 2^2*3^1 is in the sequence, but 18 = 2^1*3^2 is not.
		

Crossrefs

Cf. A071365, A304686 (strictly decreasing).

Programs

  • Maple
    filter:= proc(n)
    local F;
    F:= ifactors(n)[2];
    F:= sort(F,(s,t) -> s[1]>t[1]);
    ListTools:-Sorted(map(t -> t[2],F));
    end:
    select(filter, [$1..100]); # Robert Israel, Aug 18 2014
  • Mathematica
    Select[Range[100], GreaterEqual @@ (FactorInteger[#][[All, 2]]) &]
  • PARI
    s=[]; for(n=1, 10^3, m=factor(n)[,2]; if(vecsort(m,,4)==m, s=concat(s, n))); s \\ Jens Kruse Andersen, Aug 18 2014

A304686 Numbers with strictly decreasing prime multiplicities.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 52, 53, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 99, 101, 103, 104, 107, 109, 112, 113, 116, 117, 121
Offset: 1

Views

Author

Gus Wiseman, May 16 2018

Keywords

Examples

			10 = 2*5 has prime multiplicities (1,1) so is not in the sequence.
20 = 2*2*5 has prime multiplicities (2,1) so is in the sequence
90 = 2*3*3*5 has prime multiplicities (1,2,1) so is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],Greater@@FactorInteger[#][[All,2]]&]
  • PARI
    isok(n) = my(vm = factor(n)[,2]); vm == vecsort(vm,,4) && (#vm == #Set(vm)); \\ Michel Marcus, May 17 2018
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=1,lim\1, if(n[2][,2]==vecsort(n[2][,2],,8), listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Oct 28 2021

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Oct 28 2021

A332831 Numbers whose unsorted prime signature is neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

90, 126, 198, 234, 270, 300, 306, 342, 350, 378, 414, 522, 525, 540, 550, 558, 588, 594, 600, 630, 650, 666, 702, 738, 756, 774, 810, 825, 846, 850, 918, 950, 954, 975, 980, 990, 1026, 1050, 1062, 1078, 1098, 1134, 1150, 1170, 1176, 1188, 1200, 1206, 1242
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The sequence of terms together with their prime indices begins:
   90: {1,2,2,3}
  126: {1,2,2,4}
  198: {1,2,2,5}
  234: {1,2,2,6}
  270: {1,2,2,2,3}
  300: {1,1,2,3,3}
  306: {1,2,2,7}
  342: {1,2,2,8}
  350: {1,3,3,4}
  378: {1,2,2,2,4}
  414: {1,2,2,9}
  522: {1,2,2,10}
  525: {2,3,3,4}
  540: {1,1,2,2,2,3}
  550: {1,3,3,5}
  558: {1,2,2,11}
  588: {1,1,2,4,4}
  594: {1,2,2,2,5}
  600: {1,1,1,2,3,3}
  630: {1,2,2,3,4}
For example, the prime signature of 540 is (2,3,1), so 540 is in the sequence.
		

Crossrefs

The version for run-lengths of partitions is A332641.
The version for run-lengths of compositions is A332833.
The version for compositions is A332834.
Prime signature is A124010.
Unimodal compositions are A001523.
Partitions with weakly increasing run-lengths are A100883.
Partitions with weakly increasing or decreasing run-lengths are A332745.
Compositions with weakly increasing or decreasing run-lengths are A332835.
Compositions with weakly increasing run-lengths are A332836.

Programs

  • Mathematica
    Select[Range[1000],!Or[LessEqual@@Last/@FactorInteger[#],GreaterEqual@@Last/@FactorInteger[#]]&]

Formula

Intersection of A071365 and A112769.

A095990 Numbers with ordered prime signature (1,2).

Original entry on oeis.org

18, 50, 75, 98, 147, 242, 245, 338, 363, 507, 578, 605, 722, 845, 847, 867, 1058, 1083, 1183, 1445, 1587, 1682, 1805, 1859, 1922, 2023, 2523, 2527, 2645, 2738, 2883, 3179, 3362, 3698, 3703, 3757, 3971, 4107, 4205, 4418, 4693, 4805, 5043, 5547, 5618, 5819
Offset: 1

Views

Author

Alford Arnold, Jul 18 2004

Keywords

Comments

Numbers of the form p*q^2 where p and q are primes with p < q.
A054753 contains natural numbers with ordered prime signatures (2,1) and (1,2).

Examples

			18 = 2*3*3, 50 = 2*5*5, 75 = 3*5*5, 98 = 2*7*7, 147 = 3*7*7, ...
		

Crossrefs

Subsequence of A071365.

Programs

  • Mathematica
    Take[ Sort[ Flatten[ Table[ Prime[p]*Prime[q]^2, {q, 2, 16}, {p, q - 1}]]], 46] (* Robert G. Wilson v, Jul 23 2004 *)
  • PARI
    list(lim)=my(v=List());forprime(q=3, sqrtint(lim\2), forprime(p=2, min(lim\q^2,q-1), listput(v,p*q^2))); Set(v) \\ Charles R Greathouse IV, Feb 26 2014

Extensions

Edited and extended by Robert G. Wilson v, Jul 23 2004

A317258 Heinz numbers of integer partitions that are not totally nonincreasing.

Original entry on oeis.org

18, 50, 54, 75, 90, 98, 108, 126, 147, 150, 162, 180, 198, 234, 242, 245, 250, 252, 270, 294, 300, 306, 324, 338, 342, 350, 363, 375, 378, 396, 414, 450, 468, 486, 490, 500, 507, 522, 525, 540, 550, 558, 578, 588, 594, 600, 605, 612, 630, 648, 650, 666, 684
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2018

Keywords

Comments

An integer partition is totally nonincreasing if either it is empty or a singleton or its multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are weakly decreasing and are themselves a totally nonincreasing integer partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of all integer partitions that are not totally nonincreasing begins: (221), (331), (2221), (332), (3221), (441), (22211), (4221), (442), (3321), (22221), (32211), (5221), (6221), (551), (443), (3331), (42211), (32221), (4421), (33211), (7221), (222211), (661), (8221), (4331), (552), (3332), (42221), (52211), (9221), (33221).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    totincQ[q_]:=Or[Length[q]<=1,And[OrderedQ[Length/@Split[q]],totincQ[Reverse[Length/@Split[q]]]]];
    Select[Range[1000],!totincQ[Reverse[primeMS[#]]]&]

A316597 Heinz numbers of integer partitions that are not totally nondecreasing.

Original entry on oeis.org

12, 20, 24, 28, 40, 44, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 84, 88, 90, 92, 96, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 148, 150, 152, 153, 156, 160, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200, 204, 207, 208
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2018

Keywords

Comments

The first term of this sequence that is absent from A112769 is 150.
An integer partition is totally nondecreasing if either it is empty or a singleton or its multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are weakly increasing and, taken in reverse order, are themselves a totally nondecreasing integer partition.

Examples

			150 is the Heinz number of (3,3,2,1), with multiplicities (1,1,2), which has multiplicities (2,1), which are decreasing, so 150 does not belong to the sequence.
		

Crossrefs

A071366 Numbers n such that A046523(n) <> A071364(n) and A071364(n) <> n.

Original entry on oeis.org

50, 75, 98, 126, 147, 198, 234, 242, 245, 250, 294, 306, 338, 342, 350, 363, 375, 378, 414, 490, 500, 507, 522, 525, 550, 558, 578, 588, 594, 605, 650, 666, 686, 702, 722, 726, 735, 738, 756, 774, 825, 845, 846, 847, 850, 867, 882, 918, 950, 954, 975, 980
Offset: 1

Views

Author

Reinhard Zumkeller, May 21 2002

Keywords

Comments

Also A046523(n) <> n, as A046523(n) <= A071364(n) <= n.

Examples

			n=50=2*5*5: A071364(50)=2*3*3=18, A046523(50)=2*2*3=12;
n=500=2*2*5*5*5: A071364(500)=2*2*3*3*3=108, A046523(500)=2*2*2*3*3=72.
		

Crossrefs

Cf. A071365.

Programs

  • Mathematica
    Select[Range[1000], (e = Last /@ FactorInteger[ # ]) != Sort[e, Greater] && Product[Prime[i]^e[[i]], {i, Length[e]}] != # &] (* Ray Chandler, Sep 23 2005 *)

Extensions

Extended by Ray Chandler, Sep 23 2005
Showing 1-10 of 11 results. Next