cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A187783 De Bruijn's triangle, T(m,n) = (m*n)!/(n!^m) read by downward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 20, 90, 24, 1, 1, 1, 70, 1680, 2520, 120, 1, 1, 1, 252, 34650, 369600, 113400, 720, 1, 1, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1
Offset: 0

Views

Author

Robert G. Wilson v, Jan 05 2013

Keywords

Comments

From Tilman Piesk, Oct 28 2014: (Start)
Number of permutations of a multiset that contains m different elements n times. These multisets have the signatures A249543(m,n-1) for m>=1 and n>=2.
In an m-dimensional Pascal tensor (the generalization of a symmetric Pascal matrix) P(x1,...,xn) = (x1+...+xn)!/(x1!*...*xn!), so the main diagonal of an m-dimensional Pascal tensor is D(n) = (m*n)!/(n!^m). These diagonals are the rows of this array (with m>0), which begins like this:
m\n:0 1 2 3 4 5
0: 1 1 1 1 1 1 ... A000012;
1: 1 1 1 1 1 1 ... A000012;
2: 1 2 6 20 70 252 ... A000984;
3: 1 6 90 1680 34650 756756 ... A006480;
4: 1 24 2520 369600 63063000 11732745024 ... A008977;
5: 1 120 113400 168168000 305540235000 623360743125120 ... A008978;
6: 1 720 7484400 137225088000 3246670537110000 88832646059788350720 ... A008979;
with columns: A000142 (n=1), A000680 (n=2), A014606 (n=3), A014608 (n=4), A014609 (n=5).
A089759 is the transpose of this matrix. A034841 is its diagonal. A141906 is its lower triangle. A120666 is the upper triangle of this matrix with indices starting from 1. A248827 are the diagonal sums (or the row sums of the triangle).
(End)

Examples

			T(3,5) = (3*5)!/(5!^3) = 756756 = A014609(3) = A006480(5) is the number of permutations of a multiset that contains 3 different elements 5 times, e.g., {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3}.
		

Crossrefs

Cf. A089759 (transposed), A141906 (subtriangle), A120666 (subtriangle transposed), A060538 (1st row/column removed).
Main diagonal gives: A034841.
Row sums of the triangle: A248827.

Programs

  • Magma
    [Factorial(k*(n-k))/(Factorial(n-k))^k: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 26 2022
    
  • Mathematica
    T[n_, k_]:= (k*n)!/(n!)^k; Table[T[n, k-n], {k, 9}, {n, 0, k-1}]//Flatten
  • SageMath
    def A187783(n,k): return gamma(k*(n-k)+1)/(factorial(n-k))^k
    flatten([[A187783(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Dec 26 2022

Formula

T(m,n) = (m*n)!/(n!)^m.
A060540(m,n) = T(m,n)/m! . - R. J. Mathar, Jun 21 2023

Extensions

Row m=0 prepended by Tilman Piesk, Oct 28 2014

A008979 a(n) = (6n)!/(n!)^6.

Original entry on oeis.org

1, 720, 7484400, 137225088000, 3246670537110000, 88832646059788350720, 2670177736637149247308800, 85722533226982363751829504000, 2889253496242619386328267523990000, 101097362223624462291180422369532000000, 3644153415887633116359073848179365185734400, 134567406165969006655507763343147223231094784000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(6*n)/Factorial(n)^6: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
    
  • Maple
    seq( (6*n)!/(n!)^6, n=0..20); # G. C. Greubel, Feb 17 2020
  • Mathematica
    Table[(6 n)!/(n)!^6, {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2014 *)
  • PARI
    vector(21, n, my(m=n-1); (6*m)!/(m!)^6 ) \\ G. C. Greubel, Feb 17 2020
    
  • Sage
    [factorial(6*n)/factorial(n)^6 for n in (0..20)] # G. C. Greubel, Feb 17 2020

Formula

From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)*binomial(3*n,n)*binomial(4*n,n)*
binomial(5*n,n)*binomial(6*n,n) = ( [x^n](1 + x)^(2*n) ) * ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) * ( [x^n](1 + x)^(5*n) ) * ( [x^n](1 + x)^(6*n) ) = [x^n](F(x)^(720*n)), where F(x) = 1 + x + 4478*x^2 + 53085611*x^3 + 926072057094*x^4 + 19977558181209910*x^5 + 493286693783478576177*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008977, A008978, A186420 and A188662. (End)
a(n) ~ 3^(6*n+1/2)*4^(3*n-1)/(Pi*n)^(5/2). - Ilya Gutkovskiy, Jul 12 2016
From Peter Bala, Feb 14 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z*u*v)^n] (1 + x + y + z + u + v)^(6*n). (End)

A071549 a(n) = (7n)!/n!^7.

Original entry on oeis.org

1, 5040, 681080400, 182509367040000, 66475579247327250000, 28837919555681211870935040, 14007180988362844601443040716800, 7363615666157189603982585462030336000, 4104167472585675600759440022842715359250000, 2392741010223442438553822446842770682716580000000
Offset: 0

Views

Author

Benoit Cloitre, May 30 2002

Keywords

Comments

Number of closed paths of length 7n whose steps are 7th roots of unity. - Andrew Howroyd, Nov 01 2018

Crossrefs

Row n=7 of A187783, column k=7 of A089759.
Sequences (k*n)!/n!^k: A000984 (k = 2), A006480 (k =3), A008977 (k = 4), A008978 (k = 5), A008979 (k = 6), A071550 (k = 8), A071551 (k = 9), A071552 (k = 10).

Programs

Formula

From Peter Bala, Feb 14 2020: (Start)
a(n) = C(7*n,n)*C(6*n,n)*C(5*n,n)*C(4*n,n)*C(3*n,n)*C(2*n,n).
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, Equation 39, p. 12.
a(n) = [x^n](F(x)^(5040*n)), where F(x) = 1 + x + 62528*x^2 + 11087269661*x^3 + 3021437267047869*x^4 + 1045823730475703710735*x^5 + ...
appears to have integer coefficients. For similar results see A008979.
a(n) = [(x*y*z*u*v*w)^n] (1 + x + y + z + u + v + w)^(7*n). (End)

Extensions

a(8)-a(9) added by Andrew Howroyd, Nov 01 2018

A071550 a(n) = (8n)!/n!^8.

Original entry on oeis.org

1, 40320, 81729648000, 369398958888960000, 2390461829733887910000000, 18975581770994682860770223800320, 171889289584866507880743491472699801600
Offset: 0

Views

Author

Benoit Cloitre, May 30 2002

Keywords

Crossrefs

Sequences (k*n)!/n!^k: A000984 (k = 2), A006480 (k = 3), A008977 (k = 4), A008978 (k = 5), A008979 (k = 6), A071549 (k = 7), A071551 (k = 9), A071552 (k = 10).

Programs

  • Magma
    [Factorial(8*n)/Factorial(n)^8: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
  • Mathematica
    Table[(8 n)!/(n)!^8, {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2014 *)

A071552 a(n) = (10n)!/n!^10.

Original entry on oeis.org

1, 3628800, 2375880867360000, 4386797336285844480000000, 12868639981414579848070084500000000, 49120458506088132224064306071170476903628800
Offset: 0

Views

Author

Benoit Cloitre, May 30 2002

Keywords

Crossrefs

Sequences (k*n)!/n!^k: A000984 (k = 2), A006480 (k = 3), A008977 (k = 4), A008978 (k = 5), A008979 (k = 6), A071549 (k = 7), A071550 (k = 8), A071551 (k = 9).

Programs

  • Magma
    [Factorial(10*n)/Factorial(n)^10: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
  • Mathematica
    Table[(10n)!/(n)!^10, {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2014 *)

A269127 Number of sequences with n copies each of 1,2,...,9 avoiding the pattern 12...9.

Original entry on oeis.org

1, 362879, 12498099730471, 1072323973643442736211, 135383475007869462606521105767, 20584293980310480336378076914369061769, 3413618982844502796240740610191874586048936771, 586566986371155102435901052470650279895779757665905993
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2016

Keywords

Crossrefs

Row n=9 of A269129.

Formula

a(n) = A071551(n) - A268845(n).
Showing 1-6 of 6 results.