cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A135474 A071605(n)/(n-1)!.

Original entry on oeis.org

1, 3, 9, 36, 285, 1908, 21630, 197328, 2113911, 23814810, 294557142, 3893052636, 55457566905
Offset: 1

Views

Author

N. J. A. Sloane, Feb 08 2008

Keywords

Crossrefs

Extensions

a(10)-a(13) from Stephen A. Silver, Feb 21 2013

A040175 a(n) = n! times probability that an ordered pair of elements of S_n chosen at random (with replacement) generate S_n.

Original entry on oeis.org

3, 9, 57, 318, 3090, 24666, 234879, 2381481, 26777922, 324421053, 4265966685
Offset: 3

Views

Author

Keywords

Comments

Probability is A040173(n)/A040174(n) = a(n)/n!.
Note that a(2)=3/2 is not integer.

Examples

			Probabilities for n=1,2,3,... are 1, 3/4, 1/2, 3/8, 19/40, ...
		

References

  • J. D. Dixon, Problem 923 (BCC20.17), Indecomposable permutations and transitive groups, in Research Problems from the 20th British Combinatorial Conference, Discrete Math., 308 (2008), 621-630.

Crossrefs

Formula

a(n) = A071605(n)/n!.

Extensions

Edited by Max Alekseyev, Jan 28 2012
a(10)-a(13) from Stephen A. Silver, Feb 21 2013

A001691 Number of two-element generating sets in the symmetric group S_n.

Original entry on oeis.org

0, 1, 9, 108, 3420, 114480, 7786800, 497266560, 42616445760, 4320959126400, 534444478444800, 77699101730342400, 13282131639801024000
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a := function(n)
      local tom, mu, lens, orders, num, k;
      tom := TableOfMarks(Concatenation("S",String(n)));
      if tom = fail then tom := TableOfMarks(SymmetricGroup(n)); fi;
      mu :=  MoebiusTom(tom).mu;
      lens := LengthsTom(tom);
      orders := OrdersTom(tom);
      num := 0;
      for k in [1 .. Length(lens)] do
        if IsBound(mu[k]) then
          num := num + mu[k] * lens[k] * Binomial(orders[k],2);
        fi;
      od;
      return num;
    end; # Stephen A. Silver, Feb 20 2013

Formula

a(n) = A071605(n)/2 for n > 2.

Extensions

a(8)-a(9) (derived from A071605) added by Stephen A. Silver, Feb 17 2013
a(10)-a(13) added by Stephen A. Silver, Feb 20 2013

A220754 Number of ordered triples (a,b,c) of elements of the symmetric group S_n such that the triple a,b,c generates a transitive group.

Original entry on oeis.org

1, 7, 194, 12858, 1647384, 361351560, 125116670160, 64439768489040, 47159227114392960, 47285264408385951360, 63057420721939066617600, 109118766834521171299756800, 239996135160204867851157273600, 659114500480471292127627441484800
Offset: 1

Views

Author

Geoffrey Critzer, Apr 13 2013

Keywords

Crossrefs

Programs

  • Mathematica
    nn=14; b=Sum[n!^3 x^n/n!,{n,0,nn}]; Drop[Range[0,nn]!CoefficientList[Series[Log[b],{x,0,nn}],x],1]
  • PARI
    N = 66;  x = 'x + O('x^N);
    egf = log(sum(n=0, N, n!^2*x^n));
    gf = serlaplace(egf);
    v = Vec(gf)
    /* Joerg Arndt, Apr 14 2013 */

Formula

E.g.f.: log(Sum_{n>=0} n!^2*x^n).
a(n) = (n!)^3 - (n-1)! * Sum_{k=1..n-1} a(k) * ((n-k)!)^2 / (k-1)!. - Ilya Gutkovskiy, Jul 10 2020

A086373 Number of ordered triples (a,b,c) of elements of the symmetric group S_n such that a,b,c generate S_n.

Original entry on oeis.org

1, 7, 168, 10080, 1401120, 303730560, 109469465280, 56335746378240, 41263790481123840, 41372254858231987200, 55175243131277553715200, 95478523289749232323891200, 209996618265179127555767193600
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 06 2003

Keywords

Crossrefs

Programs

  • GAP
    a := function(n)
      local tom, mu, lens, orders, num, k;
      tom := TableOfMarks(Concatenation("S",String(n)));
      if tom = fail then tom := TableOfMarks(SymmetricGroup(n)); fi;
      mu :=  MoebiusTom(tom).mu;
      lens := LengthsTom(tom);
      orders := OrdersTom(tom);
      num := 0;
      for k in [1 .. Length(lens)] do
        if IsBound(mu[k]) then
          num := num + mu[k] * lens[k] * orders[k]^3;
        fi;
      od;
      return num;
    end; # Stephen A. Silver, Feb 20 2013

Extensions

1 more term from David Wasserman, Mar 10 2005
a(6)-a(13) from Stephen A. Silver, Feb 20 2013

A224539 Number of pairs of elements of the full transformational monoid T_n on {1,...,n} which generate a synchronizing monoid.

Original entry on oeis.org

1, 12, 549, 51520, 8063385, 1871446896
Offset: 1

Views

Author

N. J. A. Sloane, Apr 29 2013

Keywords

Comments

This is an analog for T_n of sequence A071605 (or A040175) for the symmetric group S_n.

References

  • P. J. Cameron, Dixon's theorem and random synchronization, Discrete Math., 313 (2013), 1233-1246. (a(1)-a(6) were computed by James Mitchell.)

Crossrefs

A086502 Number of ordered pairs (a,b) of elements of the symmetric group S_n such that the pair a,b generates a proper subgroup of S_n.

Original entry on oeis.org

0, 1, 18, 360, 7560, 289440, 9828000, 631169280, 46449002880, 4526271187200, 524461965350400, 74044329341875200, 12211524764030592000
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 09 2003

Keywords

Crossrefs

Cf. A071605.

Formula

a(n) = n!^2 - A071605(n).

Extensions

a(10)-(13) from Stephen A. Silver, Feb 21 2013
Showing 1-7 of 7 results.