cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A087510 Primes consisting only of digits 0 and 1 occurring with equal frequency.

Original entry on oeis.org

10010101, 10100011, 1000011011, 1000110101, 1001000111, 1001001011, 1001010011, 1010000111, 1010001101, 1010010011, 1010100011, 1010110001, 1011000101, 1100001101, 1101001001, 10000101011101, 10000111100011, 10000111110001, 10001000011111, 10001001011011
Offset: 1

Views

Author

Paul D. Hanna and Amarnath Murthy, Sep 11 2003

Keywords

Comments

There are 18 digit pairs which can produce such primes: (1,0),(1,3),(1,4),(1,6),(1,7),(1,9),(2,3),(2,9),(3,4),(3,5),(3,7),(3,8),(4,7),(4,9),(5,9),(6,7),(7,9),(8,9).

Crossrefs

Primes in A071925.
The 18 sequences in this family are: this sequence (1,0), A087511 (1,3), A087512 (1,4), A087513 (1,6), A087514 (1,7), A087515 (1,9), A087527 (2,3), A087528 (2,9), A087529 (3,4), A087530 (3,5), A087531 (3,7), A087532 (3,8), A087533 (4,7), A087534 (4,9), A087535 (5,9), A087536 (6,7), A087537 (7,9), A087538 (8,9).

Programs

  • Mathematica
    Select[FromDigits/@Tuples[{0,1},14],PrimeQ[#] && Length[x=IntegerDigits[#]]==2*Count[x,0] &] (* Jayanta Basu, May 23 2013 *)
  • PARI
    \\ B(k,d1,d2,pred) k-digits of (d1,d2) each, satisfying pred.
    B(k,d1,d2,pred)={my(L=List(),m=10^(2*k-1)); forsubset([2*k,k], s, my(t=(10^(2*k)-1)/9*d1 + (d2-d1)*sum(i=1, #s, 10^(s[i]-1))); if(t>=m && pred(t), listput(L,t))); vecsort(Vec(L))}
    { concat(vector(7,k,B(k,0,1,isprime)))[1..20] } \\ Andrew Howroyd, Sep 20 2024

A182040 Integers whose decimal representation consists of three distinct digits, one appearing once, one appearing twice, and one appearing three times.

Original entry on oeis.org

100012, 100013, 100014, 100015, 100016, 100017, 100018, 100019, 100021, 100022, 100031, 100033, 100041, 100044, 100051, 100055, 100061, 100066, 100071, 100077, 100081, 100088, 100091, 100099, 100102, 100103, 100104, 100105, 100106, 100107, 100108, 100109, 100112
Offset: 1

Views

Author

Jonathan Vos Post, Apr 09 2012

Keywords

Comments

There are 38880 terms, including 41 squares (A182098) and 3640 primes (A182092). - Zak Seidov, Apr 12 2012
This is the subsequence of A218556 consisting of terms with indices n = 254, ..., 39133. The number of terms is 38880 = A218566(10,3), the starting index is 254 = 1 + A218566(10,1) + A218566(10,2) + 1. - M. F. Hasler, Nov 02 2012

Crossrefs

Cf. A071925, A181986 (digitally balanced numbers: ternary numbers which have the same number of 0's as 1's as 2's), A182051 (primes with a majority of one digit).

Programs

  • Mathematica
    t = Select[Range[100000, 999999], Sort[Transpose[Tally[IntegerDigits[#]]][[2]]] == {1, 2, 3} &]; Take[t, 32] (* T. D. Noe, Apr 11 2012 *)
  • PARI
    is(n)=n=vecsort(eval(Vec(Str(n))));vecsort(apply(k->sum(i=1, #n,n[i]==k),vecsort(n,,8)))==[1,2,3] \\ Charles R Greathouse IV, Apr 11 2012

A218556 Numbers with d distinct decimal digits (d=1,...,10) such that for each k=1,...,d, some digit occurs exactly k times.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 101, 110, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 131, 133, 141, 144, 151, 155, 161, 166, 171, 177, 181, 188, 191, 199, 200, 202, 211, 212, 220, 221, 223, 224, 225, 226, 227, 228, 229, 232, 233, 242, 244, 252, 255, 262, 266, 272, 277, 282, 288, 292, 299, 300, 303, 311, 313, 322, 323, 330
Offset: 1

Views

Author

M. F. Hasler, Nov 02 2012

Keywords

Comments

For each of the terms, the number of digits is a triangular number A000217.
The number of terms with d = 1,2,3,... different digits is 10, 243, 38880, ... = A218566(10,d) (+ 1 for d=1, accounting for the initial 0).
The sequence is finite, it has N = 1 + sum_{i=1..10} A218566(10,i) = 9083370609101493843078695864582213215764827510991133 terms. The last term is a(N) = 9999999999888888888777777776666666555555444443333222110 (ten "9"s, nine "8"s, ..., one "0").

Examples

			The terms a(1)=0 through a(10)=9 have exactly 1 digit occurring exactly once.
The terms a(11)=100 through a(253)=998, listed in A210666, have one digit occurring once and a second, different digit occurring exactly twice.
The terms a(254)=100012 through a(39133)=999887 are listed in A182040.
For d=4, we have the (1+2+3+4 =) 10-digit terms a(39134)=1000011223 through 9999888776 with 4 different digits which occur with frequencies 1,2,3 and 4.
		

Crossrefs

Programs

  • PARI
    {my(T(n)=n*(n+1)\2); print1(0); for(i=1,2, s=vector(i+1,j,j-1); for(n=10^(T(i)-1),10^T(i)-1,i !=#Set(digits(n)) & next; c=vector(10); for(j=1,#d=digits(n),c[d[j]+1]++); vecsort(c,,8)==s & print1(","n)))}
    
  • PARI
    is_A218556(n)={ my(c=vector(10)); for(i=1,#n=digits(n),c[n[i]+1]++); #(c=vecsort(c,,8))==1+c[#c] && 2*#n==c[#c]*#c }

A181986 Digitally balanced numbers: ternary numbers which have the same number of 0's as 1's as 2's.

Original entry on oeis.org

102, 120, 201, 210, 100122, 100212, 100221, 101022, 101202, 101220, 102012, 102021, 102102, 102120, 102201, 102210, 110022, 110202, 110220, 112002, 112020, 112200, 120012, 120021, 120102, 120120, 120201, 120210, 121002, 121020, 121200, 122001, 122010, 122100
Offset: 1

Views

Author

Jonathan Vos Post, Apr 04 2012

Keywords

Comments

This is to A071925 as base 3 A007089 is to base 2 A007088. A049354 digitally balanced numbers in base 3: equal numbers of 0's, 1's, 2's, beginning 11, 15, 19, 21, 260, ... is the same sequence, but expressed in base 10. The terms of this sequence are represented directly in base 3.

Examples

			100122 is an element because it contains two each of "0" and "1" and "2".
		

Crossrefs

Programs

  • Mathematica
    Select[FromDigits/@Flatten[Permutations/@Table[PadRight[{},3n,{0,1,2}],{n,2}],1],Mod[IntegerLength[#],3]==0&]//Sort (* Harvey P. Dale, Mar 15 2020 *)

Extensions

More terms from Alois P. Heinz, Apr 05 2012

A143906 a(n) is A143905(n) written in binary.

Original entry on oeis.org

1001, 10011001, 10100101, 11000011, 100011110001, 100101101001, 100110011001, 101001100101, 101010010101, 101100001101, 110001100011, 110010010011, 110100001011, 111000000111, 1000011111100001, 1000101111010001
Offset: 1

Views

Author

Leroy Quet, Sep 04 2008

Keywords

Comments

This sequence lists all finite binary strings that are palindromes with an equal number of 0's and 1's and that each start and end with 1, listed in order of the strings' numerical values if the strings are considered to be base 2 numbers.

Crossrefs

Formula

Intersection of A057148 and A071925. - R. J. Mathar, Sep 05 2008

Extensions

Extended by R. J. Mathar, Sep 05 2008
Corrected comment. - Leroy Quet, Oct 13 2008
Showing 1-5 of 5 results.