cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072881 a(1)=a(2)=a(3)=1; for n>3, a(n)=(a(n-1)*a(n-2)+a(n-1)+a(n-2))/a(n-3).

Original entry on oeis.org

1, 1, 1, 3, 7, 31, 85, 393, 1093, 5071, 14119, 65523, 182449, 846721, 2357713, 10941843, 30467815, 141397231, 393723877, 1827222153, 5087942581, 23612490751, 65749529671, 305135157603, 849655943137, 3943144558081
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002, revised Feb 03 2005

Keywords

Comments

What accounts for the high proportion of semiprimes in this sequence? Primes: 3, 7, 31, 1093, 846721, 393723877, ... Semiprimes: 85 = 5 * 17 393 = 3 * 131 5071 = 11 * 461 14119 = 7 * 2017 65523 = 3 * 21841 182449 = 43 * 4243 5087942581 = 11113 * 457837 849655943137 = 17 * 49979761361 3943144558081 = 31 * 127198211551 - Jonathan Vos Post, Feb 04 2005

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 14, 0, -14, 0, 1},{1, 1, 1, 3, 7, 31},26] (* Ray Chandler, Jul 24 2016 *)
    nxt[{a_,b_,c_}]:={b,c,(c*b+c+b)/a}; NestList[nxt,{1,1,1},30][[All,1]] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    a(k=3, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Oct 28 2012

Formula

Both sequences u=(a(2n-1)){n>0} and u=(a(2n)){n>0} satisfy the order 3 linear recursion : u(n)=14u(n-1)-14u(n-2)+u(n-3).
a(2*n-1) = ceiling((1/11)*sqrt(1002/5-78*sqrt(33/5))*(sqrt(15)/2+sqrt(11)/ 2)^(2*n-1)).
a(2*n) = ceiling((1/11)*(13-sqrt(165))*(sqrt(15)/2+sqrt(11)/2)^(2*n)).
G.f.: x*(1+x-13*x^2-11*x^3+7*x^4+3*x^5)/(1-14*x^2+14*x^4-x^6). - Jaume Oliver Lafont, Sep 25 2009
a(n) = (4-(-1)^n)*a(n-1)-a(n-2)-1. - Bruno Langlois, Aug 21 2016
Sequences u=(a(2n)) and v=(a(2n-1)) satisfy order 2 linear recursions : u(n)=13*u(n-1)-u(n-2)-5 and v(n)=13*v(n-1)-v(n-2)-7. - Bruno Langlois, Aug 21 2016