cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A140841 Primes of the form 210n + 13.

Original entry on oeis.org

13, 223, 433, 643, 853, 1063, 1483, 1693, 2113, 2953, 3163, 3373, 3583, 3793, 4003, 4423, 5683, 6733, 7573, 7993, 8623, 9043, 9463, 9883, 10093, 10303, 10513, 10723, 11353, 12613, 12823, 13033, 13873, 14083, 14293, 14503, 14713, 14923, 15973
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 04 2008

Keywords

Crossrefs

Programs

  • Maple
    A140841 := proc(n) local a; if n = 1 then 13; else a := nextprime(procname(n-1)) ; while not a mod 210 in {13} do a := nextprime(a) ; end do: return a; end if; end: seq(A140841(n),n=1..80) ; # R. J. Mathar, Oct 22 2009
  • Mathematica
    Select[13+210Range[0,150],PrimeQ] (* Ray Chandler, Apr 29 2010 *)
  • PARI
    forprime(p=1,1e4,if(p%210==13,print1(p", "))) \\ Charles R Greathouse IV, Dec 21 2011

Extensions

More terms from R. J. Mathar, Oct 22 2009

A217587 Primes p of the form 420k + 1 for some k.

Original entry on oeis.org

421, 2521, 3361, 4201, 4621, 5881, 6301, 7561, 8821, 9241, 9661, 10501, 12601, 13441, 14281, 15121, 15541, 16381, 18061, 18481, 20161, 21001, 21841, 24781, 25621, 26041, 26881, 29401, 30241, 30661, 31081, 32341, 33181, 33601, 35281, 36541, 39901, 41161
Offset: 1

Views

Author

Joshua S.M. Weiner, Oct 07 2012

Keywords

Crossrefs

Subsequence of A073102.

Programs

  • Mathematica
    Select[Prime[Range[5000]], Mod[#, 420] == 1 &] (* T. D. Noe, Oct 08 2012 *)
    Select[420*Range[100]+1,PrimeQ] (* Harvey P. Dale, Jun 06 2013 *)

A359262 a(n) is the largest number m such that prime(n)^m is in A359260.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 3, 1, 1, 5, 3, 1, 3, 1, 1, 1, 5, 3, 1, 3, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 5, 3, 3, 1, 1, 1, 5, 1, 3, 1, 3, 9, 3, 1, 3, 1, 1, 5, 1, 1, 1, 1, 5, 3, 1, 3, 1, 3, 1, 3, 1, 5, 3, 1, 3, 1, 1, 3, 3, 3, 1, 1, 3, 1, 3, 1, 9, 1, 3, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2022

Keywords

Comments

a(n) is the largest number m such that the arithmetic mean of {1, p, p^2, ..., p^k} is an integer for all k in 1..m.
Apparently, all the terms are of the form prime(k)-2 (A040976). Conjecture: The asymptotic density of the occurrences of prime(k)-2 is (1/s(k-1)-1/s(k)), where s(k) = A005867(k) = phi(prime(k)#), and prime(k)# is the k-th primorial number (A002110).
The sums of the first 10^k terms, for k = 1, 2, ..., are 15, 221, 2291, 23287, 233641, 2337007, 23379901, 233814475, 2338211029, 23382168187, ... . If the mentioned above conjecture is correct, then the asymptotic mean of this sequence is Sum_{k>=1} (prime(k)-2)*(1/s(k-1)-1/s(k)) = 2.33821872365981424748... .
Apparently, the indices of records after n = 1 occur at A000720(A073917(n)) (verified for the first 12 terms of A073917) with record values a(A000720(A073917(n))) = prime(n+1) - 2 (verified for the first 150 terms of A073917).

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = Prime[n], k = 1, r = s = 1}, While[Divisible[s, k], k++; r *= p; s += r]; k - 2]; Array[a, 100]
  • PARI
    a(n) = {my(p = prime(n), k = 1, r = s = 1); while(!(s%k), k++; r *= p; s += r); k - 2; }

Formula

a(n) >= 1 for n >= 2.
a(n) >= 3 iff prime(n) == 1 (mod 6) (prime(n) is in A002476).
Conjectures:
a(n) >= 5 iff prime(n) == 1 (mod 30) (prime(n) is in A132230).
a(n) >= 9 iff prime(n) == 1 (mod 210) (prime(n) is in A073102).
a(n) >= prime(k) - 2 iff prime(n) == 1 (mod A002110(k-1)).

A073085 Numbers n such that 210*n+1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 16, 17, 20, 22, 23, 28, 29, 30, 35, 36, 39, 42, 44, 46, 47, 50, 51, 53, 55, 57, 59, 60, 64, 67, 68, 72, 73, 74, 78, 81, 83, 85, 86, 88, 89, 93, 96, 100, 101, 104, 105, 111, 115, 117, 118, 121, 122, 124, 125, 128, 129, 135, 137, 139, 140, 141
Offset: 1

Views

Author

Zak Seidov, Oct 08 2002

Keywords

Examples

			1 is a member because 210*1+1=211 is prime; 100 is a member because 210*100+1=21001 is prime.
		

Crossrefs

Cf. A073102.

Programs

  • Magma
    [n: n in [1..200] | IsPrime(210*n + 1)]; Vincenzo Librandi, Sep 30 2012
    
  • Mathematica
    Flatten[Position[PrimeQ[210Range[100]+1], True]]
    Select[Range[150], PrimeQ[(210*# + 1)] &] (* Vincenzo Librandi, Sep 30 2012 *)
  • PARI
    is(n)=isprime(210*n+1) \\ Charles R Greathouse IV, May 22 2017

A140848 Primes of the form 210k + 41.

Original entry on oeis.org

41, 251, 461, 881, 1091, 1301, 1511, 1721, 1931, 2141, 2351, 3191, 3821, 4241, 4451, 4871, 5081, 5501, 5711, 6131, 6551, 6761, 6971, 8231, 8861, 9281, 9491, 10331, 11171, 11801, 12011, 12641, 13691, 13901, 14321, 14741, 14951, 15161, 15581
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 04 2008

Keywords

Crossrefs

Cf. A073102.

Programs

  • Magma
    [ a: n in [0..900] | IsPrime(a) where a is 210*n+41] // Vincenzo Librandi, Nov 24 2010
  • Mathematica
    Select[41+210Range[0,150],PrimeQ] (* Ray Chandler, Apr 29 2010 *)

Extensions

More terms from Vincenzo Librandi, Apr 28 2010

A140840 Primes of the form 210n+11.

Original entry on oeis.org

11, 431, 641, 1061, 1481, 1901, 2111, 2531, 2741, 3371, 3581, 4001, 4211, 4421, 5051, 5261, 5471, 6101, 6311, 6521, 7151, 8831, 9041, 9461, 10091, 10301, 11351, 11981, 12401, 12611, 12821, 13241, 13451, 14081, 15131, 15551, 15761, 15971, 16811, 17021
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 04 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[210 Range[0, 100] + 11, PrimeQ@ # &]
    Select[Range[11,10^4,210],PrimeQ] (* Zak Seidov, Jan 14 2014 *)

Formula

a(n) = 210*A076355(n) + 11. - Zak Seidov, Jan 14 2014

Extensions

I changed the Mathematica coding and extended the sequence. - Robert G. Wilson v, Sep 22 2008

A140842 Primes of the form 210k + 17.

Original entry on oeis.org

17, 227, 647, 857, 1277, 1487, 1697, 1907, 2957, 3167, 3797, 4007, 4217, 4637, 5477, 5897, 6317, 6737, 6947, 7577, 8627, 8837, 9257, 9467, 9677, 9887, 10937, 11777, 11987, 12197, 13037, 13457, 13877, 14087, 14717, 15137, 15767, 16187, 16607
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 04 2008

Keywords

Crossrefs

Programs

  • Magma
    [ a: n in [0..900] | IsPrime(a) where a is 210*n+17] // Vincenzo Librandi, Nov 24 2010
  • Mathematica
    Select[17 + 210 Range[0, 100], PrimeQ] (* T. D. Noe, Apr 27 2010 *)

Extensions

Extended by several contributors, Apr 29 2010

A140844 Primes of the form 210k + 23.

Original entry on oeis.org

23, 233, 443, 653, 863, 1283, 1493, 1913, 2333, 2543, 2753, 2963, 3593, 3803, 4013, 4643, 5273, 5483, 5693, 5903, 6113, 6323, 7583, 7793, 8423, 9473, 10103, 10313, 10733, 11783, 12203, 12413, 13043, 13463, 13883, 14303, 14723, 15773, 16193
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 04 2008

Keywords

Crossrefs

Cf. A073102.

Programs

  • Magma
    [a: n in [0..900]|IsPrime(a) where a is 210*n+23]; // Vincenzo Librandi, Nov 24 2010
  • Mathematica
    Select[23+210Range[0,150],PrimeQ] (* Ray Chandler, Apr 29 2010 *)

Extensions

Extended by several authors, Apr 29 2010

A140847 Primes of the form 210k + 37.

Original entry on oeis.org

37, 457, 877, 1087, 1297, 2137, 2347, 2557, 2767, 3187, 3607, 4027, 4447, 4657, 5077, 6337, 6547, 6967, 7177, 8017, 8647, 9067, 9277, 9697, 9907, 10957, 11587, 12007, 12637, 13267, 13477, 13687, 14107, 14737, 14947, 15787, 16417, 17047, 17257
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 04 2008

Keywords

Crossrefs

Cf. A073102.

Programs

  • Magma
    [ a: n in [0..90] | IsPrime(a) where a is 210*n+37 ]; // Vincenzo Librandi, Nov 24 2010
  • Mathematica
    Select[37+210Range[0,150],PrimeQ] (* Ray Chandler, Apr 29 2010 *)

Extensions

Extended by Ray Chandler, Apr 29 2010
More terms from Vincenzo Librandi, Apr 28 2010

A140856 Primes of the form 210n+71.

Original entry on oeis.org

71, 281, 491, 701, 911, 2381, 2591, 2801, 3011, 3221, 3851, 4271, 4481, 4691, 5531, 5741, 6581, 6791, 7001, 7211, 7841, 8681, 9311, 9521, 9941, 10151, 10781, 11411, 11621, 11831, 12041, 12251, 12671, 13721, 13931, 14561, 14771, 15401, 16451
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 04 2008

Keywords

Crossrefs

Cf. A073102.

Programs

  • Mathematica
    Select[71+210Range[0,150],PrimeQ] (* Ray Chandler, Apr 29 2010 *)

Extensions

Corrected and extended by D. S. McNeil, Dec 10 2009
Showing 1-10 of 21 results. Next