cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A276123 a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1) + 1)*(a(n-2) + 1) / a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 10, 55, 154, 868, 2449, 13825, 39025, 220324, 621946, 3511351, 9912106, 55961284, 157971745, 891869185, 2517635809, 14213945668, 40124201194, 226531261495, 639469583290, 3610286238244, 10191389131441, 57538048550401, 162422756519761
Offset: 0

Views

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1,4,10,55]; [n le 6 select I[n] else 17*Self(n-2)-17*Self(n-4)+Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 27 2016
  • Mathematica
    LinearRecurrence[{0, 17, 0, -17, 0, 1}, {1, 1, 1, 4, 10, 55}, 40] (* Vincenzo Librandi, Aug 27 2016 *)
    nxt[{a_,b_,c_}]:={b,c,((c+1)(b+1))/a}; NestList[nxt,{1,1,1},30][[All,1]] (* Harvey P. Dale, Oct 01 2021 *)
  • PARI
    Vec((1+x-16*x^2-13*x^3+10*x^4+4*x^5)/((1-x)*(1+x)*(1-16*x^2+x^4)) + O(x^30)) \\ Colin Barker, Aug 21 2016
    

Formula

a(n) = (9-3*(-1)^n)/2*a(n-1) - a(n-2) - 1.
From Colin Barker, Aug 21 2016: (Start)
a(n) = 17*a(n-2) - 17*a(n-4) + a(n-6) for n > 5.
G.f.: (1 + x - 16*x^2 - 13*x^3 + 10*x^4 + 4*x^5) / ((1-x)*(1+x)*(1 - 16*x^2 + x^4)). (End)
a(2n+1) = A073352(n). a(2n) = A048907(n). - R. J. Mathar, Jul 04 2024

Extensions

More terms from Colin Barker, Aug 21 2016

A048907 Indices of 9-gonal numbers which are also triangular.

Original entry on oeis.org

1, 10, 154, 2449, 39025, 621946, 9912106, 157971745, 2517635809, 40124201194, 639469583290, 10191389131441, 162422756519761, 2588572715184730, 41254740686435914, 657487278267789889, 10478541711598202305, 166999180107303446986, 2661508340005256949466
Offset: 1

Views

Author

Keywords

Comments

Entries are == 1 (mod 3). - N. J. A. Sloane, Sep 22 2007
lim(n -> Infinity, a(n)/a(n-1)) = 8 + 3*sqrt(7). - Ant King, Nov 03 2011

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{17, -17, 1}, {1, 10, 154}, 17]; (* Ant King, Nov 03 2011 *)
  • PARI
    Vec(-x*(x^2-7*x+1)/((x-1)*(x^2-16*x+1)) + O(x^20)) \\ Colin Barker, Jun 22 2015

Formula

G.f.: x*(1-7*x+x^2)/((1-x)*(1-16*x+x^2)).
a(n+2) = 16*a(n+1)-a(n)-5, a(n+1) = 8*a(n)-2.5+1.5*(28*a(n)^2-20*a(n)+1)^0.5. - Richard Choulet, Sep 22 2007
From Ant King, Nov 03 2011: (Start)
a(n) = 17*a(n-1) - 17*a(n-2) + a(n-3).
a(n) = ceiling(3/28*(3-sqrt(7))*(8 + 3*sqrt(7))^n).
(End)
a(n) = A097830(n-1)-7*A097830(n-2)+A097830(n-3). - R. J. Mathar, Jul 04 2024
Showing 1-2 of 2 results.