cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001080 a(n) = 16*a(n-1) - a(n-2) with a(0) = 0, a(1) = 3.

Original entry on oeis.org

0, 3, 48, 765, 12192, 194307, 3096720, 49353213, 786554688, 12535521795, 199781794032, 3183973182717, 50743789129440, 808716652888323, 12888722657083728, 205410845860451325, 3273684811110137472, 52173546131901748227, 831503053299317834160
Offset: 0

Views

Author

Keywords

Comments

Also 7*x^2 + 1 is a square; n=7 in PARI script below. - Cino Hilliard, Mar 08 2003
That is, the terms are solutions y of the Pell-Fermat equation x^2 - 7 * y^2 = 1. The corresponding values of x are in A001081. (x,y) = (1,0), (8,3), (127,48), ... - Bernard Schott, Feb 23 2019
The first solution to the equation x^2 - 7*y^2 = 1 is (X(0); Y(0)) = (1; 0) and the other solutions are defined by: (X(n); Y(n))= (8*X(n-1) + 21*Y(n-1); 3*X(n-1) + 8*Y(n-1)), with n >= 1. - Mohamed Bouhamida, Jan 16 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 281.

Crossrefs

Equals 3 * A077412. Bisection of A084069.
Cf. A048907.
Cf. A001081, A010727. - Vincenzo Librandi, Feb 16 2009

Programs

  • GAP
    a:=[0,3];; for n in [3..30] do a[n]:=16*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Feb 23 2019
  • Magma
    I:=[0,3]; [n le 2 select I[n] else 16*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 20 2017
    
  • Maple
    A001080:=3*z/(1-16*z+z**2); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{16,-1},{0,3},30] (* Harvey P. Dale, Nov 01 2011 *)
    CoefficientList[Series[3*x/(1-16*x+x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    nxsqp1(m,n) = { for(x=1,m, y = n*x*x+1; if(issquare(y),print1(x" ")) ) }
    
  • PARI
    x='x+O('x^30); concat([0], Vec(3*x/(1-16*x+x^2))) \\ G. C. Greubel, Dec 20 2017
    
  • SageMath
    (3*x/(1-16*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 23 2019
    

Formula

G.f.: 3*x/(1-16*x+x^2).
From Mohamed Bouhamida, Sep 20 2006: (Start)
a(n) = 15*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 17*(a(n-1) - a(n-2)) + a(n-3). (End)
a(n) = 16*a(n-1) - a(n-2) with a(1)=0 and a(2)=3. - Sture Sjöstedt, Nov 18 2011
E.g.f.: exp(8*x)*sinh(3*sqrt(7)*x)/sqrt(7). - G. C. Greubel, Feb 23 2019

A276123 a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1) + 1)*(a(n-2) + 1) / a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 10, 55, 154, 868, 2449, 13825, 39025, 220324, 621946, 3511351, 9912106, 55961284, 157971745, 891869185, 2517635809, 14213945668, 40124201194, 226531261495, 639469583290, 3610286238244, 10191389131441, 57538048550401, 162422756519761
Offset: 0

Views

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1,4,10,55]; [n le 6 select I[n] else 17*Self(n-2)-17*Self(n-4)+Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 27 2016
  • Mathematica
    LinearRecurrence[{0, 17, 0, -17, 0, 1}, {1, 1, 1, 4, 10, 55}, 40] (* Vincenzo Librandi, Aug 27 2016 *)
    nxt[{a_,b_,c_}]:={b,c,((c+1)(b+1))/a}; NestList[nxt,{1,1,1},30][[All,1]] (* Harvey P. Dale, Oct 01 2021 *)
  • PARI
    Vec((1+x-16*x^2-13*x^3+10*x^4+4*x^5)/((1-x)*(1+x)*(1-16*x^2+x^4)) + O(x^30)) \\ Colin Barker, Aug 21 2016
    

Formula

a(n) = (9-3*(-1)^n)/2*a(n-1) - a(n-2) - 1.
From Colin Barker, Aug 21 2016: (Start)
a(n) = 17*a(n-2) - 17*a(n-4) + a(n-6) for n > 5.
G.f.: (1 + x - 16*x^2 - 13*x^3 + 10*x^4 + 4*x^5) / ((1-x)*(1+x)*(1 - 16*x^2 + x^4)). (End)
a(2n+1) = A073352(n). a(2n) = A048907(n). - R. J. Mathar, Jul 04 2024

Extensions

More terms from Colin Barker, Aug 21 2016

A048909 9-gonal (or nonagonal) triangular numbers.

Original entry on oeis.org

1, 325, 82621, 20985481, 5330229625, 1353857339341, 343874433963061, 87342752369278225, 22184715227362706161, 5634830324997758086741, 1431224717834203191326125, 363525443499562612838749081, 92334031424171069457850940521, 23452480456295952079681300143325
Offset: 1

Views

Author

Keywords

Comments

We want solutions to m(7m-5)/2 = n(n+1)/2, or equivalently (14m-5)^2 = 7(2n+1)^2 + 18. This is the Pell-type equation x^2 - 7y^2 = 18.
This equation has unit solutions (x,y) = (5,1), (9, 3) and (19, 7), which lead to the family of solutions (5, 1), (9, 3), (19, 7), (61, 23), (135, 51), (299, 113), (971, 367), .... The corresponding integer solutions are (m,n) = (1,1), (10, 25), (154, 406), (2449, 6478), ... (A048907 and A048908), giving the nonagonal triangular numbers 1, 325, 82621, 20985481, ... shown here.
Also, numbers simultaneously 9-gonal and centered 9-gonal, the intersection of A001106 and A060544. - Steven Schlicker, Apr 24 2007

Crossrefs

Programs

  • Maple
    CP := n -> 1+1/2*9*(n^2-n): N:=10: u:=8: v:=1: x:=9: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+63*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
  • Mathematica
    LinearRecurrence[{255, -255, 1}, {1, 325, 82621}, 12]; (* Ant King, Nov 03 2011 *)
  • PARI
    Vec(-x*(x^2+70*x+1)/((x-1)*(x^2-254*x+1)) + O(x^20)) \\ Colin Barker, Jun 22 2015

Formula

Define x(n) + y(n)*sqrt(63) = (9+sqrt(63))*(8+sqrt(63))^n, s(n) = (y(n)+1)/2; then a(n) = (2+9*(s(n)^2-s(n)))/2. - Steven Schlicker, Apr 24 2007
a(n+1) = 254*a(n+1)-a(n)+72. - Richard Choulet, Sep 22 2007
a(n+1) = 127*a(n+1)+36+6*(448*a(n)^2+256*a(n)+25)^0.5. - Richard Choulet, Sep 22 2007
G.f.: z*(1+70*z+z^2)/((1-z)*(1-254*z+z^2)). - Richard Choulet, Sep 22 2007
From Ant King, Nov 03 2011: (Start)
a(n) = 255*a(n-1) - 255*a(n-2) + a(n-3).
a(n) = 1/112*(9*(8 + 3*sqrt(7))^(2n-1) + 9*(8-3* sqrt(7))^(2n-1) - 32).
a(n) = floor(9/112*(8 + 3*sqrt(7))^(2n-1)).
Limit_{n -> oo} a(n)/a(n-1) = (8 + 3*sqrt(7))^2. (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Richard Choulet, Sep 22 2007

A048908 Indices of triangular numbers which are also 9-gonal.

Original entry on oeis.org

1, 25, 406, 6478, 103249, 1645513, 26224966, 417953950, 6661038241, 106158657913, 1691877488374, 26963881156078, 429730221008881, 6848719654986025, 109149784258767526, 1739547828485294398, 27723615471505942849, 441838299715609791193, 7041689179978250716246
Offset: 1

Views

Author

Keywords

Comments

lim( n -> Infinity , a(n)/a(n-1)) = 8 + 3*sqrt(7). - Ant King, Nov 03 2011

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{17, -17, 1}, {1, 25, 406}, 16]; (* Ant King, Nov 03 2011 *)
  • PARI
    Vec(x*(2*x^2-8*x-1)/((x-1)*(x^2-16*x+1)) + O(x^50)) \\ Colin Barker, Jun 22 2015

Formula

a(n+2) = 16*a(n+1)-a(n)+7, a(n+1) = 8*a(n)+3.5+1.5*(28*a(n)^2+28*a(n)+25)^0.5 - Richard Choulet, Sep 22 2007
G.f.: f(z) = a(1)*z+a(2)*z^2+... = (z+8z^2-2*z^3)/((1-z)*(1-16*z+z^2)) - Richard Choulet, Oct 09 2007
From Ant King, Nov 03 2011: (Start)
a(n) = 17*a(n-1) - 17*a(n-2) + a(n-3).
a(n) = floor(3/28*sqrt(7)*(3 - sqrt(7))*(8 + 3* sqrt(7))^n).
(End)
Showing 1-4 of 4 results.